
NA SA- CR- _0 3,)_ 5 ORIGINAL

FINAL REPORT

NOVEMBER 1996

Conversion-Integration of MSFC Nonlinear Signal Diagnostic

Analysis Algorithms for realtime Execution on MSFC's MPP

Prototype System

NASA CONTRACT NO. NAS8-40341

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER, AL 35812

by

AI SIGNAL RESEARCH, INC.

3322 South Memorial Parkway, Suite 67

Huntsville, AL 35801

(205)880-1968

AI SIGNAL RESEARCH NASA

Program Manager: J. Jong Contract Monitor: T. Zoladz

Contracting Officer: Patricia Fundum

1.0

2.0

3.0

2.1

2.2

TABLE OF CONTENTS

Program Summary ... 1

Technical Discussion ... 2

Introduction .. 2

Signal Analysis techniques .. 2

2.2.1 TOPO: Topographical Joint Time-Frequency Mapping Algorithm 3

2.2.1.1 General background, algorithm and simulation example TOPO 4

2.2.1.2 RainFall Algorithm for Noise floor Estimation ... 6

2.2.1.3 DSP Code Overview of TOPO using Data Translation's DSP-EZ
programming language running on C40 DSP .. 6

2.2.2 Hyper-Coherence Analysis - Nonlinear correlation characteristics between
integer spectral components ... 14

2.2.2.1 General background, algorithm and simulation example of hyper-
coherence function ... 16

2.2.2.2 Test Example of hyper-coherence function .. 27

2.2.2.3 DSP Code Overview of hyper-coherence function using Data
Translation's DSP-EZ programming language running on C40 DSP 18

2.2.3 Bi-Spectral Analysis -Nonlinear correlation characteristics between three
spectral components with frequency sum and difference .. 25

2.2.3.1 General background, algorithm and simulation example of bi-
coherence function ... 26

2.2.3.2 Test Example of bi-coherence function .. 27

2.2.3.3 DSP Code Overview of bi-coherence function using Data
Translation's DSP-EZ programming language running on C40 DSP 27

2.2.4 Tri-Spectral Analysis - higher order coherence estimations among four
spectral components and modulation sideband ... 31

2.2.4.1 General background, algorithm and simulation example of tri-
coherence function ... 32

2.2.4.2 Simulation Example of tri-coherence function ... 27

2.2.4.3 DSP Code Overview of tri-coherence function using Data
Translation's DSP-EZ programming language running on C40 DSP 33

2.2.5 Envelope Detection Method - Demodulation of envelope signal using
Hilbert Transform .. 37

2.2.5.1 General background, algorithm and simulation example of high
frequency envelope analysis .. 38

2.2.5.2 Algorithm/Code of Envelope Analysis Program ... 39

2.2.5.3 DSP Code Overview of envelope ana!ysis using Data Translation's
DSP-EZ programming language running on C40 DSP 39

2.2.6 GHC - Generalized Hyper-Coherence Analysis ... 42

2.2.6.1 General background, algorithm and simulation example of
Generalized hyper-coherence function .. 42

.... , p2.2.6.2 DSP Code Overview of GHC function usln_Data Translation s DS -
EZ programming language running on C40_SP 43

Conclusion ... 48

FOREWORD

This report was prepared by AI Signal Research, Inc. (ASRI) for the George C. Marshall

Space Flight Center, National Aeronautics and Space Administration. The work was

performed under contract NAS8-40341, entitled "Conversion-Integration of MSFC

Nonlinear Signal Diagnostic Analysis Algorithms for realtime Execution on MSFC's

MPP Prototype System " over the time period from June 7, 1995 through December 2,

1996.

The work was carried out by Dr. Jen-Yi Jong serving as Program Manager. Dr. Jong was

responsible for the software development, conversion and evaluation of Nonlinear Signal

Diagnostic Analysis Algorithms. Ms. Polly Lu serving as programmer was responsible

for implementing the software on C40 DSP using Data Translation's DSP-EZ

programming language.

Mr. T Zoladz, MSFC/ED32, and Mr. T. Fiorucci, MSFC/23, provided valuable guidance

through coordination of computer resources and definition of task requirements and

priority. In addition, Mr. T. Bapty at Vanderbilt has provided valuable assistance in

establishing the handshake for the conversion from ASRrs DSP algorithms to

Vanderbilt's MGA Model Based Programming environment

1.0 PROGRAM SUMMARY

NASA's advanced propulsion system SSME/ATD has been undergoing extensive flight

certification and developmental testing, which involves large numbers of health

monitoring measurements. To enhance engine safety and reliability, detailed analysis and

evaluation of the measurement signals are mandatory to assess its dynamic characteristics

and operational condition. Efficient and reliable signal detection techniques will reduce

the risk of catastrophic system failures and expedite the evaluation of both flight and

ground test data, and thereby reduce launch turn-around time. During the development of

SSME, ASRI participated in the research and development of several advanced non-

linear signal diagnostic methods for health monitoring and failure prediction in

turbomachinery components. However, due to the intensive computational requirement

associated with such advanced analysis tasks, current SSME dynamic data analysis and

diagnostic evaluation is performed off-line following flight or ground test with a typical

diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype

System is to eliminate such "diagnostic lag time" by achieving signal processing and

analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time

to initiate corrective action and also to enable efficient scheduling of inspection,

maintenance and repair activities.

The major objective of this project was to convert and implement a number of advanced

nonlinear diagnostic DSP algorithms in a format consistent with that required for

integration into the Vanderbilt Multigraph Architecture (MGA) Model Based

Programming environment. This effort will allow the real-time execution of these

algorithms using the MSFC MPP Prototype System. ASRI has completed the software

conversion and integration of a sequence of nonlinear signal analysis techniques specified

in the SOW for real-time execution on MSFC's MPP Prototype. This report documents

and summarizes the results of the contract tasks; provides the complete computer source

code; including all FORTRAN/C Utilities; and all other utilities/supporting software

libraries that are required for operation.

2.0 TECHNICAL DISCUSSION

2.1 Introduction

Machinery fault detection and diagnosis have always been significant technical challenges

in the aeronautics and transportation industries. Yet they remain a necessity since a

reliable health monitoring system can prevent catastrophic failures and costly

unscheduled down time due to false alarms. As computer information processing

technology continues to advance, the major challenge associated with machinery

monitoring and diagnosis is shifting from how to obtain machinery vibration data to

methods of information extraction and interpretation. Therefore, the incorporation of

advanced signal processing element into a health monitoring device has become

invaluable. However, due to the intensive computational requirement associated with

such advanced analysis tasks, current SSME dynamic data analysis and diagnostic

evaluation is performed off-line following flight or ground test with a typical diagnostic

turnaround time of one to two days. The objective of MSFC's MPP Prototype System is

to eliminate such "diagnostic lag time" by achieving signal processing and analysis in

real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate

corrective action and also to enable efficient scheduling of inspection, maintenance and

repair activities.

2.2. Signal Analysis Techniques

Over the past decade, significant progress has been made in the aerospace, transportation

and industrial communities to enhance performance of machinery failure detection and

diagnosis through advances in instrumentation, modeling, and signal analysis techniques.

ASRI has participated in the development of a hierarchy of advanced nonlinear diagnostic

signal analysis techniques for turbomachinery system. These techniques can extract and

identify intelligent information hidden in a measurement signal which is often

unidentifiable using conventional signal analysis methods. By providing additional

insight into the system response, these analysis tools can better identify well-hidden

defect symptoms as well as false-alarm signatures. As a result, false-alarrrdmis-

interpretation rates are reduced and greatly improve system reliability. These techniques

have been applied to day-to-day Space Shuttle Main Engine (SSME) hot-firing test/flight

data, and appear to be highly promising for turbomachinery health monitoring and failure

diagnostics.

In the following subsections, the technical discussion of several nonlinear diagnostic

signal analysis to be converted/integrated into MSFC MPP prototype system will be

discussed. These techniques include:

.

2.
TOPO: Topographical Joint Time-Frequency Mapping Algorithm

Hyper-Coherence Analysis - Nonlinear correlation characteristics between integer
spectral components

°

4.

5.

6.

Bi-Spectral Analysis -Nonlinear correlation characteristics between three spectral
components with frequency sum and difference
Tri-Spectral Analysis - higher order coherence estimations among four spectral
components and modulation sideband
Envelope Detection Method - Demodulation of envelope signal using Hilbert
Transform

GHC - Generalized Hyper-Coherence using instantaneous phase information

Software implementation of these techniques has been performed on a TI-C40 DSP,

which are able to run in real-time on ASRrs C40 DSP board and display the results on a

PC computer system. Since the Multigraph Architecture (MGA) is not available at ASRI,

a handshake point and format for the conversion from ASRrs DSP algorithms to

Vanderbilt MGA Model Based Programming environment must be utilized. The

algorithm and codes of the programs documented in this report utilize such a conversion

format in order to reach the handshake point acceptable by Vanderbilt.

2.2.1 TOPO: Topographical Joint Time-Frequency Mapping Algorithm

2.2.1.1 General background, algorithm and simulation example TOPO

The Topo spectral time/frequency display algorithm has been implemented on a TI-C40

DSP running in real-time and display Topo on a PC computer system. This format has

been proved to be acceptable by Vanderbilt as a feasible handshake point during the
conversion of the bi-coherence program. This format utilizes both Data Translation's

DSP-EZ language to program signal processing application directly on a TI C40 DSP

board, and the Visual Basic language to program the tasks on PC computer.. Detailed

information of this Topo program is discussed below:

The 3-D PSD isoplot or waterfall plot (as shown in figure 1. l) has been used extensively

for vibration signal analysis for engine diagnostics. It can display the spectral

information in a joint frequency, time and amplitude format. This format is especially

useful for nonstationary dynamic signal to allow clear visual inspection and identification

of the trace of any particular spectral component as a function of time and its relationship

with respect to some other frequency components. However, there exist several
drawback about this format. First of all, a threshold level must be chosen, so that only

the spectral components above the threshold level will be plotted. While the rest peaks

below that level will be ignored (as shown in Figure 1.2-a). However, for machinery

diagnostic application, these low amplitude spectral components could still represent

some important defect signature and should not be left out. secondly, if the threshold

level is set too low in order to include the low-amplitude PSD peaks, then the fluctuating

noise floor with larger amplitude will smear the isoplot in its corresponding frequency

region (as shown in Figure 1.2-b). Thirdly, for a nonstationary data, when there are too

many spectral peaks present and cross-over occur among different spectral components,
then it would become very difficult to identify the trace of those spectral components in

the isoplot.

AI-481 HPFP RADI86 TIME INC= .128E-01(SECI XINC=IOB.IHZI
MAX= .502E+01 LIN.

301 ,

E

FREOUENCY (HZ]

Figure 1 .1

I

. SllRESllOLD LEVEL TOO HIGH--- Important Low Amplitude Defect

Signature will Be Ignored.

. SIIRESIIOLD LEVEL TOO LOW --- The FlUctuating Noise Floor W£11
Smear The Entire Isoplot

(a)

!

NON-STATIONARY DATA Many PSD Peaks Get Compressed Too

Closely Together & Cross-over OcCur

Among Dilfferent Spectral Components.

Figure 1.2

I

0

0

0

0

o

0

0

0

0

I.J.J
4<

0

i.-I

,-_u_
C_ ,--t

_0_0

,---I (_

OOCO

0_1 ,--I CO _t- O0 0 CO O0 CO I_ U"_L_ L_

I_ Oq Lr_ O00_ 04 _00_ '_" 04 '_" 0 0

'_' O_ Oq O_ _0 ¢0 04 (Xl ,--I ,'-I 0 0 0
O0 _0 _0 04 ,-I ,-'1

_ ,_- CO 00q 0 CO ",_" CO ,--I Oq O_ (Xl

I",,..'._" 0 _0 "_ _0 ,-I ,-I "_t' L_ ,--I CO
0,,I 0_1 ,,-I O')O3,'--1OO03 "_

kO
,,-.I P"-

0 "_ I".
I._ 0,1 0

04,,--I
0'_

II II II
U") _: 13.. kO
r_-3r'n '_" 0 o3

,,_ r_ ,-.I C3
OL.IJ

0

o

C)

0
0

II fl II H II fl fl fl II _

_m_x_ __ _

9

O[

0

':i:• ':- ':... .i""::::...... "• ...:.,, : :- .:.. . 2

:'.-::'::_&....:'i .:'::'.........:.-:"::.':::............"""'.....

A

_ o°
0

0 0

O0 . , . ' , , . _ Z ,-. _ : rO

['- . .' • ' °" _ ._.._ ,-6 o • _ -. ,,_ ..,,,G. ,_,r.,,._. • _'.'. . _,,, _° ,,_a I
L. • _ *°'%°',1"1 .'{ ' • 4. , _.....v_ _ _F° .*l* I

-I'--/ :'--
7: • :" '. • • .-_ _
k ':'_'_ :'" "'._ "'_"t- 'l:.: "r',- :' ";._.,'.. ,." -'1 o
"i:"-=" .'- .'"_--=-=.-_'-." _- . :"':L,-" " -":," l "

© ,____.--... ,,_... ,;_,
-i-- '-:',_- "........ ,-: - ,'_'"_ .._---Y-.._r

_l----"." _ " ,,'"..:': ,":._. /
-I ' • '. " ; " t' ._{_)". " .: i'
/ " -- --' '-- - ., ,. S'/' .co /

.... :__,.......... ., . . _ -_.-. -_, _-:'.'r/.

"1" .::: • • ,..," --.- :'- ,-'-_..-. --" .../ .'" ./-_:','fl
-I.": "."-.. " ": " " _--_':_- _._,

, i11, @ I i , I I o I t II I I ;, I _

.-)
I:--:/i:":---:-,:::__.:::/:; "-

-: :...' :. " ""::'.-'T.._-_.".':'-- '::_ /' ,,".,/... r'
i--:.._-.--.--_ '_: -,. ,,,

. '--,_,.'--, .- - :' - • . :_ r_-,. _'7..'_._,._. •

o I ---" ""- : ,'T'-"" " ""0 i , , " , '

To overcome these limitations, the PSD to be display must be Normalized so that the

noise floor variation would not smear the isoplot. This can be achieved with the TOPO

algorithm by first identifying the noise floor of the PSD which is shown by the solid line

near the bottom of the PSD in figure 1.3. The original PSD is then Normalized by

removing the noise floor from the raw PSD so that all the spectral peaks will have the

same "ground" level. From this normalized PSD, all the spectral peaks can be better
identified without the interference of noise floor variation. This noise floor estimation is

performed using a "Rainfall" algorithm to be discussed in detail in this report.

Figure 1.4 shows a typical Topo plot of a SSME vibration measurement signal during

engine start-up. In this Topo plot, 400 PSD are plotted as a function of frequency and
time. Each line or dot in this plot represent a PSD peak location. The width of each line

is proportional to the signal-to-noise ration (SNR is defined as the amplitude of spectral

peak above noise floor in dB) of each PSD peak. During this non-stationary operation,

detailed spectral information and cross-over between different component can be clearly

visualized and identified which would be difficult from an isoplot. The Topo Algorithm

can transform a large amount of dynamic signal into a simple image-like pattern, which

would allow an easy identification of any special pattern associated with certain particular

phenomenon. The examples in figure 1.5 show 4 different SSME dynamics pattern.

Figure 1.5-a shows the Zipper frequency component with a unique periodic frequency

variation phenomenon. Figure 1.5-b shows 12KHZ anomalous phenomena with a group

of spectral peaks not tracking the Sync and Sync harmonics during engine shut-down.

Figure 1.5-c shows the development trend of the modulation/sideband pattern associated

with bearing defect. And figure 1.5-d shows the subtle difference of frequency variation

during PWL change between a rotor related components and a fluid related component.

2.2.1.2 RainFall Algorithm for Noise floor Estimation.

The rainfall algorithm forms the basis for noise floor estimation in generating major

spectral peaks along with their signal-to-noise ration (SNR) and bandwidth (BW). The

following steps demonstrate the Rainfall algorithm for noise floor estimation.

. The deep valleys are first removed and smoothed (interpolated) with the two

neighboring points.

All PSD peaks are first identified and counted..

3. The left and right roots of each peak are also identified based on the rainfall trace

shown in figure 6-a.

4. Remove Small Peaks by Applying Rainfall roll-over as shown in figure 6-b for any

peak amplitude less than the user-specified threshold.

5. Consolidate peaks by merging smaller peaks been rolled-over with larger peaks not

been rolled-over. Assign new left and right roots after peak consolidation.

6. calculate noise floor by interpolating all settle-down rainfall drops

3_1

Peak # 1

%

Peak # 4

Peak # 3

Peak # 2 _' \'__

® ®
Left Ro

Ri,_ht Root '_ / _ _ ""X'_XO

u /V,_ Left Roo' Left Root l

Left Roo |
,..--. /

Right Root _ .'_ /
Night Root /

Right Root

Figure 1.6-a

Roll

JR_oil over _,

,ver

Stay

lover

{:_;

Figure 1.6-b

3_2

2.2.1.3 DSP Code Overview of TOPO using Data Translation's DSP-EZ

programming language running on C40 DSP.

The Topo algorithm has been implemented on ASRI's TI-C40 DSP, and has been

preliminary tested using some "simple" input analog wave from a signal generator. The

complete DSP Codes are listed below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PARTI: Function ApplyRainFall is implemented in DSP-EZ side.

It takes PSD, rainfall parameter and number of PSD elements as arguments
and returns the Noise Floor data and two arrays of data storing all the peaks and

indices of the peaks in the array.

** Function ApplyRainFall **

** Global: PkLoc() and PkAmp() **
** Return: Noise Floor **

Function ApplyRainFall(A As FloatArray, RainFall As Integer, n As Integer) As FloatArray
Dim PSDG As FloatArray

Dim iLeft As FloatArray

Dim iRight As FloatArray

Dim iFlag As FloatArray
Dim Floor As FloatArray

Dim Ad As FloatArray

Dim nPeak, i,j, L, R, iNext, iL, iR, kPeak As Integer

Dim AmpR, AmpL, aL, aR, delta, root As Single
Dim iLeft0 As FloatArray

PSDG = GenLine(0,0, n+l)

iLeft = GenLine(0,0,n+l)

iRight = GenLine(0,0,n+l)

iFlag = GenLine(0,0,n+l)
PkLoc= GenLine(0,0,n+l)

PkAmp = GenLine(0,0,n+l)
Floor = GenLine(0,0,n+l)

iLeft0 -- GenLine(0,0,n+l)

'allocate memories for array elements

For i : 0 To n-1

PSDG(i+I) = A(i)
Next i

For i = 2 To n-1

If PSDG(i) <: PSDG(i-1) And PSDG(i) <= PSDG(i+I) Then

PSDG(i) = 0.5 * (PSDG(i-1) + PSDG(i+I))
End If

Next i

PSDG(1) = PSDG(2) + Abs(PSDG(2)) * 0.001

13

PSDG(n)=PSDG(n-1)+Abs(PSDG(n-1))* 0.001

npeak= 0
i=2
DoWhile(i <=n-1)

If PSDG(i)>PSDG(i-1)AndPSDG(i)>PSDG(i+I)Then
npeak=npeak+l
L=i-1
DoWhile(L> 1 AndPSDG(L-I)<=PSDG(L))

L=L-1
Loop
R=i
DoWhile(R<n AndPSDG(R+I)<=PSDG(R))

R=R+I
Loop
iLeft(nPeak)=L
iRight(nPeak)=R
PkLoc(nPeak)=i
iFlag(nPeak)= 1
i=R

EndIf
i=i+l

Loop

Fori =2Tonpeak-1
If iFlag(i)=1Then

AmpL=PSDG(PkLoc(i))-PSDG(iRight(i))
AmpR=PSDG(PkLoc(i+1)) - PSDG(iLeft(i+1))
If (AmpR>AmpL)And(AmpL<=RainFall)Then

iFlag(i)= -9 'Leftmerge
EndIf
If (AmpL>AmpR)And(AmpR<=RainFall)Then

iFlag(i+l)= 9 'Rightmerge
EndIf

EndIf
Nexti
iFlag(1)= 1
iFlag(npeak)=1
iFlag(npeak+1)=1
iLeft(nPeak+ 1)=iRight(nPeak)
kPeak=0
Fori = 1TonPeak

If iFlag(i)=1Then
kPeak=kPeak+1
iL=i
If i > 1Then

iL=iL - 1
DoWhile(iL> 1 And iFlag(iL) = -9)

iL = iL - 1

Loop
iL =iL + 1

End If
iR=i

If i < nPeak Then
iR = iR + 1

14

EndIf

DoWhile(iR<nPeakAndiFlag(iR) =9)
iR=iR+ 1

Loop
iR=iR- 1

Nexti
EndIf

PkLoc(kPeak)= PkLoc(i)
iLeft0(kPeak)=iLeft(iL)
iRight(kPeak)=iRight(iR)
iL =iLeft0(kPeak)
iR=iRight(kPeak)
aL=PSDG(iL)
aR=PSDG(iR)
delta=(aR-aL)/(iR-iL)
root--aL+(PkLoc(kPeak)-iL) * delta
PkAmp(kPeak)=PSDG(PkLoc(kPeak)) - root

Fori = 1TokPeak
iLeft(i) = iLeft0(i)

Next i

For i = 1 To kPeak

iL = iLeft(i)

iR = iRight(i)
aL= PSDG(iL)

aR = PSDG(iR)

delta = (aR - aL)/(iR - iL)

For j = iL To iR
Floor(j) = aL + (j -iL) * delta

Nextj
Next i

For i = 1 To iLeft(1)

Floor(i) = Floor(iLeft(1))
Next i

For i = iRight(kPeak) To n
Floor(i) = Floor(iRight(kPeak))

Next i

PkLoc=Extract(PkLoc, kPeak, 1)

PkAmp=Extract(PkAmp, kPeak, 1)

ApplyRainFall =Extract(Floor, n, 1)

'Global for passing to VB

'Global for passing to VB
'Function Returns Noise Floor

End Function

%%

PART2: In Visual Basic Host side, two arrays of data, PkLoc0 and PkAmp0 are passed from DSP-EZ, and
then Functions FindPeak and SortMax are called to find the

cutoff value so to obtain the TOPO data for plotting.

** Procedure SortMax **

25

' ** Returned Twk0 is sorted PkVal0 in descending order **

B

i

Sub SortMax (PkVal0 As Single, Twk0 As Single, m As Integer)

Dim i, k, mm, z As Integer

Dim T10 As Integer
Dim t20 As Single

Dim iWk0 As Integer

ReDim T1 (m)
ReDim t2(m)

ReDim iWk(m)

Fori= 0To m- 1

iWk(i) = 0

Twk(i) = -1000
Next i
mm=m- 1

Fori=0Tom-1

z=mm
Fork=0Tom-1

If PkVal(i) >= Twk(k) Then
z=k

Exit For

End If

Next k

Fork= zTo m- 2

Tl(k + 1) = iWk(k)

t2(k + 1) = Twk(k)
Next k
Fork=z+lTom-1

iWk(k) = T1 (k)

Twk(k) = t2(k)
Next k

iWk(z) = i

Twk(z) = PkVal(i)
Next i

End Sub

**

** Function FindPeak **

** Call : SortMax and obtain Twk0 **

** Return: Peak Value(single) **

Function FindPeak (A0 As Single, ChoicePK As Integer, Neigh As Integer, n As Long) As Single

Dim NumPk As Integer

Dim Nex, i, j, MinPk As Integer

Dim PeakLoc0 As Integer

Dim Peakamp0 As Single

Dim Twk0 As Single

16

ReDimPeakLoc(n)
ReDimPeakamp(n)
ReDimTwk(n)

NumPk=0
Fori= 2Ton- 2

If (A(i)>A(i - 1))And(A(i)>A(i+ 1))Then
Nex=i + 2
NumPk--1
PeakLoc(0)=i
Peakamp(0)=A(i)
ExitFor

EndIf
Nexti
Fori = NexTon- 2

If A(i)>A(i - 1)AndA(i)>A(i+1)Then
If (i <PeakLoc(NumPk- 1)+Neigh)Then

PeakLoc(NumPk- 1)=i
Peakamp(NumPk- 1)=A(i)

Else
NumPk= NumPk+ 1
PeakLoc(NumPk- 1)=i
Peakamp(NumPk- 1)=A(i)

EndIf
EndIf

Nexti

SortMaxPeakamp0,Twk0,NumPk
If ChoicePK>=NumPkThen

MinPk=NumPk
Else

MinPk=ChoicePK
EndIf
FindPeak=Twk(MinPk- 1)

EndFunction

'** HostobtainsarraydatafromDSP-EZ. **

If CommChannel=TopoChanThen
If bufferreadyfromdsp(frmDemo.DspEzl,TopoChan)Then

GetBufferFromDspfrmDemo.DspEzl,TopoChan,Databuffer0,validpts
Plotbufferplot5,Databuffer(),validpts
lblFilYmax.Caption=plot5.yMax
lblFilYmin.Caption=plot5.yMin

EndIf
EndIf
If CommChannel = LocChan Then

GetBufferFromDsp DspEzl, CommChannel, Databuffer0, validpts

For i = 0 To validpts - 1
PkLoc(i) = Databuffer(i)

3_7

Nexti
EndIf
If CommChannel=AmpChanThen

GetBufferFromDspDspEzl,CommChannel,Databuffer0,validpts
Fori =0Tovalidpts- 1

PkAmp(i)= Databuffer(i)
Nexti

If validpts> 20Then
CutOff=FindPeak(Databuffer0,20,5,validpts)

EndIf
If CutOff< 5Then

LowVal=5
Else

LowVal=CutOff
EndIf
HighVal= 1000- LowVal
frmTopo!txtCutOff.Text=Str(CutOff)

Fori = 0Tovalidpts- 1
If PkAmp(i)>=CutOffThen

Sx=PkAmp(i)/ 60
If Sx > 1 Then

Sx= 1
End If

Ex = Sx * Broad + 4 * PkLoc(i)

TopoData(i) = LowVal

frmTopo !Picturel.Line (4 * PkLoc(i), TopoData(i))-(Ex, TopoData(i))
End If

Next i

rl % -- BitBlt(ByVal frmTopo.Picturel.hDC, ByVal HDisp, ByVal 0, ByVal frmTopo.Picturel.Width

- HDisp, ByVal frmTopo.Picturel.Height - VDisp, ByVal frmTopo.hDC, ByVal frmTopo.Picturel.Left,

ByVal frmTopo.Picturel.Top + VDisp, ByVal SRCCopy)

rl % = BitBlt(ByVal frmTopo.Picturel.hDC, ByVal frmTopo.Picturel.Left, ByVal
frmTopo.Picturel.Height - VDisp, ByVal frmTopo.Picturel.Width, ByVal VDisp, ByVal frmTopo.hDC,

ByVal 0, ByVal 0, ByVal Whiteness)
End If

3_8

2.2.2 Hyper-Coherence Analysis - Nonlinear correlation characteristics between
integer spectral components

2.2.2.1 General background, algorithm and simulation example of hyper-coherence
function

In machinery health monitoring, the shaft synchronous (RPM) component and its

harmonics in a monitoring signal contains much subtle information about the system

operating condition. Many mechanical failure modes, such as shaft misalignment, loose

coupling, or rubbing, will cause waveform distortion resulting in the generation of strong

harmonics. For example, the radial rubbing of a rotating shaft will cause waveform

clipping. This waveform clipping will then generate strong odd synchronous harmonics

which can be easily identified from its PSD. However, due to a complex operational

environment, many other independent sources may coincidentally generate spectral

components coincident with harmonic frequencies appearing to be synchronous

harmonics. With this potential for ambiguity, a diagnostic method which can identify

whether an apparent harmonic is a true harmonic is indispensable. The hyper-coherence

method developed by ASRI provides such a nonlinear technique for harmonic

identification. Hyper-coherence represents a hierarchy of higher joint moments between a

reference spectral component and any of its harmonics. It can identify when a spectral

component at a harmonic frequency is truly a harmonic or not. This is achieved by

measuring a special phase difference to identify the degree of correlation between the

fundamental and a harmonic.

To describe the nonlinear interaction between harmonically related spectral components

in a given stationary, zero mean signal, we define the Hyper-spectrum of order n by the

relation

H(n; fl) = E[Xn(fl) X*(nfl)], n = 1,2,3,.. (2.1)

where fl is an arbitrary reference frequency, and nfl is an integer multiple of fl. Thus,

the ascending terms in H(n; fl) represents a single value from the linear spectrum, bi-

spectrum, tri-spectrum, etc., at the specific value fl= f2-- ...= fn.

In analogy with the ordinary coherence function, the hyper-coherence can be defined as a

normalized hyper-spectrum:

IE[Xn(fl) X*(nfl)]l 2

G2(n; fl) = ..

E[IXn(fl)l 2 E[IX(nfl)12])

n=1,2,3.. (2.2)

3_9

The hyper-coherence function defines the nonlinear correlation between a reference

frequency component in a vibration signal and its harmonics. A major benefit is

determination of whether an apparent harmonic in a complex vibration signal is

correlated with the fundamental or caused by extraneous noise. The technique has been

frequently applied to space shuttle main engine turbopump measurements in order to

discriminate between a true Sync harmonic and other independent components. A typical

example is the discrimination between a true 3N and a so-called "pseudo-3N"

components.

2.2.2.2 Test Example for hyper-coherence Analysis

An example encountered from SSME hot firing test can best demonstrate the practical

application of hyper-coherence for machinery diagnostics. Figures 2.1-a shows the PSD

taken from a HPFTP accelerometer during SSME test 901-436. The peak marked "N" is

corresponding to the fundamental RPM component, and the remaining major peaks are its

harmonics 2N, 3N and 4N. Engine failure occurred near the end of the test. Debris was

found in a down stream coolant line during tear-down hardware inspection. Off-line

diagnostic signal analysis was performed after the fact to investigate the failure.

Anomaly was detected due to a high level amplitude of 3N and this is considered to be

defect signature associated with several different failure modes.

To confirm it as a defect signature, Hyper-Coherence analysis was performed. Figure

2.1-c shows the hyper-coherence function resulting from this test. It shows the

correlation between the fundamental RPM (N) and all of its harmonics including itself.

High level coherence peaks indicate that 2N, 3N, and 4N are all highly correlated with the

reference component N. Therefore, they are all true harmonics of the Sync frequency

component, and the original high level 3N PSD of the test is a true defect signature.

A similar situation occurred later during another SSME engine test 901-471. Figure 2.1-b

shows the PSD taken from a HPFTP accelerometer during this test with similar

abnormally high 3N PSD amplitude. However, the hyper-coherence analysis was able to

identify this apparent defect signature as a false-alarm. Figure 2.1-d shows the hyper-

coherence function resulting from this test. This time, the hyper-coherence at 3N is much

smaller. This indicates that the spectral peak at the 3N frequency is not a true third

harmonic. The signature turned out to be the so-called pseudo 3N component which is

due to some independent source in the HPFTP not related to the machinery rotational

process.

It should be pointed out that even though the hyper-coherence is only defined at the

harmonic frequencies of the reference frequency. However, if the frequency of a higher

harmonic is greater than the nyquist frequency, it will be folded back below the nyquist

frequency due to aliasing effect. In this case, the hyper-coherence can still pick

correlation of this aliased harmonic despite the frequency of this aliased harmonic is no

longer a integer multiple of the reference frequency. For this reason, the hyper-coherence

is still computed for all frequencies other than the harmonic frequencies. However, the

2O

LL_0L06 ? 9E_0L06 s_s_ xo_ _ou_a_qoo-asdXH (p) ? (o)

LL_0L06 ? 9£_0L06 s_s_ _o_ GSd (q) ? (_)

LL_0L06 ? 9E_0L06 s_s_ _WSS ao_ sTsXl_UV _ou_x_qOD-a_dXH L'Z oxnBT_

oogg O00g oogI

N£

zH baal
O001

NZ

I , , , , I , , , , I , , , , I , ,I_

0S+S

00g 0

,.,_,m,,v,nrv].[oo0"0
OEI= _^'_1,q

ZH_= A_

qoD-d_H
(p)

oog'L_,O_

00g'4Ll,

000"ggl_

_ 00g'gg

OOg'L6

OOg'_ggI

O00"gggI

00g'zLI,Z

00g'LI9

I ,, , , O00"I
981 (XV'd d;.qdX-I1L170106

ZH bazA
00gB 0008 00gl 0001 00g

''''I'''' I''''I'''' I ''''

: N£ N
I,,,,I,,,,I,,,,I,,,,I, II

08+S 98T _ 4.4di-I Itl_0[06

0
• gO-XI'O

0_ [= _A_N

ZH_= A_H

Oga (q)

000"g091

00g'LgSI

000"ggI

00g'zg

00g'SBtl

OOg'LgOg

OOg'ZL_g

OOg'LggI

00g'_19

_O+HI'O

t'-q

I I I I

,m'_'..m,q-_,m,.

NE
I l I I I I

O_l+S

"'_'xlcr_'"_ '-,'_

N
, I', ,, I,,,,

98I _dAdH. 9£_0[06

000"0

0EI=gA_N

ZH_= Akfl

qoo-d£H

O)

000"01gl

000"gg08

ioooo6g
iO00"oggT

000"0_

000"0_g

O00"OggI

000"0ZZI

000"019

000"I

I I I I I I I I I I I

NZ

''' I' ' '' I' ;'' LO-_l'O

OE [= _A_i%[

00g'_0g

000"0gl

000"g00g

_ 000"06_g

-O00"OLLI

:000"0g_l

N 4 000"0''_

_000"01g

O00"oggI
'_Z0-HI'0

9[b0106

N£
I i i i i I , , , , I , , i , I , , , i I ' ' i

09 I+S 981 (I_ dAdH

to

0.1E+O0

500.0 0.070

1002.5 0.002

1502.5 0.000599

3005.0 0.00002'7

2505.0 0.000025

2005.0 0.000021

4510.0 0.5E-05

350'7.5 0.3E-05

4007.5 0.3E-05

COMP= 0.5861

(a) PSD

0.1E-07

1.0000

500.0 1.000

1000.0 1.000

1502.5 1.000

2505.0 0.999

3005.0 0.999

2002.5 0.999

4507.5 0.994

4007.5 0.993

3507.5 0.993

COMP= 0.5861

PSD

(b) Hyper-Cohez

0.0000
0

HYP-COH
I I J

II
I I I I

X=Clipped Sine Wave
' I ' ' ' ' I

S+

I I I I I

,,d

L_)

1 I

,d

I I

J

0.00
I 1 I I

I I

7d _d

I I I I I I I I

! I

I I

I I

1000

I 1

L

1 I

2000

I I I !

3000
Freq f3 (hz)

_k

I I

4000

m

.

°

5000

Figure 2.2 HYPER-COHERENCE He(f), (Ref Freq= 500.00) of clipped Sine Wave

hyper-coherence below the reference frequency is not computed. This is because the

phase of the reference term, X n, in equation (1) becomes a small number when n

becomes smaller than 1, which would appear to be a constant phase. Figure 2.2 shows a

simulation example for aliased harmonics. The simulation signal is a sine wave at 500

Hz. The amplitude of the sine wave is truncated at one side in order to generated its

harmonics. Figure 2.2(a) shows the PSD of the simulation signal. The reference

component (N) along with its harmonics, 2N, 3N upto to 10N, are non-aliased

harmonics. The peaks marked (llN), (12N), upto (20N) are aliased harmonics. The

peaks marked [21N], [22N], upto [30N] are double aliased harmonics. Figure 2.2(b)

shows its hyper-coherence function with 500 Hz as the reference frequency. The hyper-

coherence pick strong correlation for all the non-aliased harmonics (1N to ION), and

moderate correlation for aliased (and doubled aliased) harmonics (11N to 30N).

2.2.2.3 DSP Code Overview of hyper-coherence function using Data Translation's DSP-
EZ programming language running on C40 DSP.

The hyper-coherence algorithm has been implemented on ASRI's TI-C40 DSP, using
Data Translation's DSP-EZ programming language. This section lists the complete DSP
Codes of it. The DSP-EZ utilizes a series of well-defined functions to construct a signal
processing application directly on DSP. Therefore, the processing algorithm/flow-chart
of any particular application program can be clearly defined. This format has proved to

be acceptable as conversion format..

' *** Function Hyper Coherence ***

Function HyperCoherence(il As Integer,ml As Integer)
Dim BHWnd As FloatArray
Dim WndData0 As FloatArray
Dim Tempbuff As FloatArray
Dim Fs As Single
Dim kref As Integer
Dim kmax As Integer
Dim kmin As Integer
Dim bw As Single
Dim R1 As Single
Dim R2 As Single
Dim R3 As Single
Dim R4 As Single
Dim J1 As Complex
Dim J2 As Complex
Dim J3 As Complex
Dim d, j, i, m As Integer
Dim dBScale As Single
Dim Power As Single
_'1- "t-

'1generate Window Data l
_'JI- -t-

dbScale= -20 * log 10(10*FFT_SIZE) + 6.0
BHWnd = GenWindow(BLACKMAN_HARRIS_61,BUFFSIZE)

23

'1acquire parameters from buffer
t't- ... -I-

Fs=Frequency
bw = Fs / BUFFSIZE
kref = ref / bw + 0.5
kmin=kref-2
kmax -- nmax
1"1- ... "t"

'1Put FFT data to host for plotting
I"11- ... Jl-

WndData0=Window(BHWnd,TimeData)
XX=fft(WndData0)

t i_ ...

' Calculate Hyper Coherence
I. t - ...

For d=0 To Nmax -1

Rl=Abs(XX(d))
If i 1=0 Then

HPSD0(d)= HPSD0(d)+ RI*R1
ElseIf il=l Then

HPSD 1(d)= HPSD 1(d)+ R I*R 1
ElseIf i1=2 Then

HPSD2(d)= HPSD2(d)+ RI*R1
ElseIf i1=3 Then

HPSD3(d)= HPSD3(d)+ RI*R1
ElseIf i1=4 Then

HPSD4(d)= HPSD4(d)+ RI*R1
ElseIf i1=5 Then

HPSD5(d)= HPSD5(d)+ RI*R1
ElseIf i 1=6 Then

HPSD6(d)= HPSD6(d)+ RI*R1
ElseIf i1=7 Then

HPSDT(d)= HPSD7(d)+ RI*R1
End If

Next d
For d=kmin To kmax-1

Power = d ! kref

J1 = XX(kref)^power
RI= -Imag(XX(d))

R2= Real(XX(d))

J2=MakeComplex(R2, R1)
If i 1=0 Then

HAA0(d)=HAA0(d)+J 1*J2
ElseIf il=l Then

HAA 1(d)--HAA 1(d)+J 1*J2
Elself i1=2 Then

HAA2(d)=HAA2(d)+J 1*J2
ElseIf i1=3 Then

HAA3(d)=HAA3(d)+JI*J2
ElseIf i1=4 Then

HAA4(d)=HAA4(d)+JI*J2
ElseIf il =5 Then

HAA5(d)=HAA5(d)+J1 *J2
ElseIf i1=6 Then

'conj(XX(d))

24

Else

End If

HAA6(d)=HAA6(d)+J 1 *J2

HAA7(d)=HAA7(d)+JI*J2

If i 1=0 Then

HBB0(d)-HBB0(d)+Abs(J1)*Abs(J1)
ElseIf i 1= 1 Then

HBB 1(d)-HBB 1(d)+Abs(J 1)* Abs(J 1)
ElseIf i1=2 Then

HBB2(d)--HBB2(d)+Abs(J1)*Abs(J1)
ElseIf i1=3 Then

HBB3(d)=HBB3(d)+Abs(J1)*Abs(J1)
ElseIf i1=4 Then

UBg4(d)--HBB4(d)+Abs(J1)*Abs(J1)
ElseIf i1=5 Then

HBB5(d)=HBB5(d)+Abs(J 1)*Abs(J 1)
ElseIf i1=6 Then

HBB6(d)=HBB6(d)+Abs(J1)*Abs(J1)
Else

HBB7(d)=HBB7(d)+Abs(J1)*Abs(J1)
End If

R4--Abs(XX(d))
If i 1=0 Then

HCC0(d)=HCC0(d)+R4*R4
ElseIf il=l Then

HCC 1(d)=HCC 1(d)+R4*R4
ElseIf i 1=2 Then

HCC2(d)=HCC2(d)+R4*R4
ElseIf i1=3 Then

HCC3 (d)=HCC3 (d)+R4*R4
ElseIf i1=4 Then

HCC4(d)=HCC4(d)+R4*R4
ElseIf i1=5 Then

HCC5(d)=HCC5(d)+R4*R4
ElseIf i 1=6 Then

HCC6(d)=HCC6(d)+R4*R4
Else

HCC7(d)=HCC7(d)+R4*R4
End If

Next d

tempbuff=AD.Scan(buffsize)
If (ml=NumOfAvg) Then

For d=0 To kmin-1
If i 1=0 Then

HBC0(d) = 0.001
ElseIf il=l Then

HBCI(d)=0.001
ElseIf i1=2 Then

HBC2(d)=0.001
Elself i 1=3 Then

HBC3(d)=0.001
ElseIf i1=4 Then

HBC4(d)=0.001

25

ElseIf i 1=5 Then

HBC5(d)=0.001
ElseIf i1=6 Then

HBC6(d)=0.001
ElseIf i1=7 Then

HBCT(d)=0.001
End If

Next d

For d=kmin To kmax-1
If i 1=0 Then

UBC0(d)--Abs(HAA0(d)) * Abs(HAA0(d))/(HBB0(d)*HCC0(d))
ElseIf il=l Then

HB C 1(d)=Abs(HAA 1(d)) * Abs(HAA 1(d))/(HBB 1(d)*HCC 1(d))
ElseIf i1=2 Then

UBC2(d)=Abs(UAA2(d)) * Abs(HAA2(d))/(HBB2(d)*HCC2(d))
ElseIf i 1=3 Then

HBC3(d)=Abs(HAA3(d)) * Abs(HAA3(d))/(HBB3(d)*HCC3(d))
ElseIf i1=4 Then

HBC4(d)=Abs(UAA4(d)) * Abs(HAA4(d))/(HBB4(d)*HCC4(d))
ElseIf i1=5 Then

HBC5(d)--Abs(HAA5(d)) * Abs(HAA5(d))/(HBB5(d)*HCC5(d))
ElseIf i1--6 Then

HBC6(d)=Abs(Uaa6(d)) * Abs(HAA6(d))/(HBB6(d)*HCC6(d))
Else

HBC7(d)=Abs(HAA7(d)) * Abs(HAA7(d))/(HBB7(d)*HCCT(d))
End If
Next d

tempbuff=AD.Scan(buffsize)
For d= 0 To Nmax-1

If i 1--0 Then

HPSD0(d)= 10*log 10(HPSD0(d)/NumOfAvg)+ dB Scale
ElseIf il=l

HPSDI(d)=
ElseIf i1=2

HPSD2(d)=
ElseIf i1=3

HPSD3(d)=

Then

10*log 10(HPSD 1(d)/NumOfAvg)+ dBScale
Then

10*log 10(HPSD2(d)/NumOfAvg)+ dBScale
Then

10*log 10(HPSD3(d)/NumOfAvg)+ dBScale
ElseIf i 1=4 Then

HPSD4(d)= 10*log 10(HPSD4(d)/NumOfAvg)+ dBScale
Elself il-5 Then

HPSD5(d)= 10*log 10(HPSD5(d)/NumOfAvg)+ dBScale
ElseIf i1=6 Then

HPSD6(d)= 10*log 10(HPSD6(d)/NumOfAvg)+ dBScale
Else

HPSD7(d)= 10*log 10(HPSD7(d)/NumOfAvg)+ dBScale
End If

Next d
End If

End Function

26

2.2.3 Bi-Spectral Analysis -Nonlinear correlation characteristics between three
spectral components with frequency sum and difference

The dynamic response of a rotating machine can exhibit frequency sum or difference

phenomena. This type of nonlinear phenomena is primarily due to amplitude modulation

between various rotational components and fluid/structure interactions. Amplitude

modulation can be generated by at least six phenomena. Enrich and Eshleman have

published works using analytical techniques to explain how these modulations are

physically generated. The characteristics of such nonlinear interactions are usually

reflected in a response waveform which can be identified by using the bi-spectral

technique.

However, due to the lack of phase relationship information among different frequency

components, conventional linear spectral analysis is not able to describe or identify such

nonlinear phenomena. In linear spectral analysis, the time series of any fluctuating

physical quantity is regarded as the superposition of statistically uncorrelated waves and

can be described, in part, by its power spectrum which shows the power distribution in

the frequency domain. However, if nonlinear interactions occur, some coherent phase

relationship exists among different frequency components. As a result, the information

content of harmonics and sidebands for machinery fault diagnostics is usually not fully

exploited.

2.2.3.1 General background, algorithm and simulation example of bi-coherence
function

As the power spectral density (PSD) function is a second moment statistic of a random

signal, the auto-N-spectrum (ABS) represents the third joint moment among three

different waves at frequencies w 1, w 2 and the sum frequency Wl+W2, and can be

estimated by:

BXXX (CO1,0)2) = E[X(0)I)X(0)2)X*(0)I "-[- 0)2)] (3.1)

Where X(co) is the Fourier transform of x(t). The auto bi-coherence (ABC), a normalized

bi-spectrum, is defined as:

b_ (0),, 0)2) = IBxxx (0)1,0)2) 12 (3.2)
E[I X(0) 1) X(0)2)12]E[I X(0) 1 + 0)2)12]

The discrete time formulation for bi-coherence function is:

NA

^2 [2 [Xi(_l)Xi(co2)X_(O)l +0"12)] 12

i=1 (3.3)
bXXX (0)1,0)2)= NA NA

{_ [I X i (0)1) Xi (0)2) 12]}{_ [I X; (0)1 + 0)2) 12]}

i=1 i=1

27

Where Xi(co) is the FFT of the i-th block ensemble average data

NA is the total number of ensemble average blocks

By using Schwarz' inequality, it can be shown that the bi-coherence is always bounded

by zero and unity. Bi-coherence bxxx(co 1,m2) is a function of two frequencies, col and

0)2. Therefore, a three dimensional plot would be required in order to display a complete

bi-coherence function. To minimize the computation requirement associated with the

complete 3D bi-coherence function, a special bi-coherence function bxxx(mr,co) is

frequently utilized for machinery diagnostic application. One of the bi-frequency

arguments, co1, can be fixed at some particular reference frequency of interest, (e.g. col =

mr = bearing characteristic frequency or Sync frequency, etc.) while the other frequency

argument, co2= co, sweeps through the entire analysis frequency range. As will be

discussed next, there exists a certain limit for the second frequency argument, m2= co,

which is function of the reference frequency mr and the sampling frequency cos .

The maximum frequency available for a discrete time data is the nyquist frequency, ran=

cos/2, which is defined as half of its sampling frequency. Therefore, there exists a region

over which the ABS is defined in the bi-frequency domain (col, 0)2): First of all, both col

& (o2 must be limited by +m n, which is corresponding to a square region in the bi-

frequency domain. In addition, the sum frequency col+co2 of the third (implicit) spectral

component in the ABS function must also be limited by +m n, which is corresponding to

the region between the 2 -45 degree lines (line D-D & E-E in figure 3.1) in the bi-

frequency domain. As a result, the ABS is only defined over the hexagon region as

shown in figure 1. Furthermore, due to the symmetric property of the ABS, this hexagon

region cab be further reduced. Referring to the definition of ABS in equation 3.1, bi-

spectrum is the cumulant average of the 3 spectral components:

B(COl,CO2) = E [X(COl) X(oY2) X(-COl-OY2)]. { Note: X*(COl+CO2)= X(-COl-CO2) }

Since the order of the spectral sequence is irrelevant, a total of 6 different permutations of

these 3 spectral components exist which would lead to 6 identity among ABS:

permutations:

[COl, co2; -col-Or 2]

[°]2, col; -col-co2]

[o)2, -col-m2; COl,] [-col-m2, col; o)2]

[col, -col-m2; m2] [-col-m2, 0)2; col]

Identities:

Bxxx(col, co2) = Bxxx(m2, -co 1-o)2)

= Bxxx(co2, col)

= Bxxx(-col-co 2, col)

=Bxxx(col, -col-m2) = Bxxx(-col-CO2, co2)

Furthermore, the complex conjugate of the ABS provides additional 6 different

permutations and 6 more identities as:

B*(col,m2) = E [X*(col) X*(m2) X*(-col-m 2)] = E [x(-col) x(-m2) X(col+m2) 1.

28

permutations:

[-col, -0)2; C°l+co2]

[-032, -col; col+m2]

Identities:

Bxxx(col, 032)

[-032, col+co2;

[-col, C°l+°Y2;

= B*xxx(-col, -0)2)

= B*xxx(-0) 2, -C01)

-col,] [6°1+°)2, -col; -°2]

-°2,] [°)1+°)2, -0)2; -col]

=B*xxx(-o 2, col+co2)

= B*xxx(-col, °31+°)2)

= B*xxx(col+O)2, -col)

= B*xxx(o31+ot 2, -032)

This would lead to the following 3 symmetric properties of ABS:

1. Symmetric with respect to 45 ° line A-A

2. Conjugate Symmetric with respect to -45 ° line B-B

3. Symmetric with respect to -30 ° line C-C: col = -2032

B

Figure 3.1 Symmetric Property of Auto Bi-Coherence Function

If the ABS in the triangular region in the 1st quadrant (the shaded triangle in figure 1) is

known, then the ABS in the entire hexagon region can be obtained based on these 3

symmetric properties,. As a result, this triangular region is the only region over which

the computation of ABS is required. However, for the special bi-coherence function

b(cor,co) discussed above, the frequency argument, co, should sweep through the entire first
quadrant from 0 upto the -45 degree boundary line (line D-D). The parameter "fmax" in

the computer codes to be discussed below is refereed to this boundary line.

29

2.2.3.2 Test Example of bi-coherence function

The bi-coherence algorithm implemented on ASRI's TI-C40 DSP has been preliminary

tested utilizing a carefully-design test signal containing both nonlinearly-correlated wave

and linearly-independent wave at the same frequency so that, with a known degree of

nonlinear correlation in the test signal, the resulting bi-coherence value can be evaluated

for its accuracy. In addition, Mr. Bapty of Vanderbilt requested ASRI to provide a set of
simulation data with correct bi-coherence results so that he can test the bi-coherence

program on the MPP system for verification purpose. Therefore, a simple simulation

example has been designed which generates three time histories xl(t), x2(t) and x3(t) as

follows:

X 1(t) = cos(coJ + _l) + c°s(cobt + alP2) + cos[(co + cob)t + (_1 + _2)] + N1 (t)

X2(t) = cos(co, t + _1) + cos(cobt + q_2) + cos[(co_ +cob)t+OP3]+N2(t)

X3(t) = cos(co, t + _l) + cos(cobt + _2) + 0.5" cos[(co, + cob)t + (_1 +_2)]

+0.5 * cos[(co, + co_)t + _3] + N3 (t)

where _1, q_2 and _3 are independent random phase; Nl(t), N2(t) and N3(t) are

independent Gaussian White Noise, and the sum frequency coc (2700 Hz) --- coa

(1000 Hz)+ cob (1700 Hz), is the frequency of the third sine wave. Each one of these

time series is composed of three sine waves at frequency coa , cob and coc. The first two

waves at coa and cob are identical for each of the time histories. But the third wave at co

c is quite different. For x 1(t), the phase at coc is equal to the sum of the phases at coa

and cob, which represents perfect phase coupling. For x2(t), the random phase at coc

indicates total independence among these three sine waves. For x3(t), 50% of the

component at coc is phase coupled with coa and cob, and the remaining 50% with

random phase independent of coa and COB.

Since all these three signal have the same energy distribution in frequency domain,

therefore, they all have identical PSD (Power spectral density) as shown in figures 3.2-a,

3.2-b and 3.2-c for xl(t), x2(t) and x3(t) respectively. Figures 3.3-a, 3.3-b, and 3.3-c

show their corresponding auto-bicoherence function with the first frequency argument col

fixed at 1000 Hz. The X-axis in figure 3.3 represents the second frequency argument o32

of the bi-coherence function. In figure 3.3-a, there is a strong peak at bi-frequency (co

a=1000 Hz ,cob=1700 Hz) with amplitude close to one. This indicates the components at

coa, cob and coc in x l(t) are highly correlated due to strong phase coupling. For x2(t),

since the phases at these three frequencies are independent random phases, no significant

bicoherence peaks are apparent in figure 3.3-b. For x3(t), the amplitude at bi-frequency

(coa=1000 Hz ,cob=170_ Hz) in figure 3.3-c, is only 0.729. The corresponding bi-
coherence square (0.729 "_- 0.53) indicates that only 50% of the power at coc is correlated

with coa and cob, and the remainder is totally independent. Therefore, the bi-coherence

analysis completely distinguishes these three time histories even though they have

identical PSDs.

30

1-a

1-b

1-C

ABCTEST Channel 1 S+ 0.00

0.1E+O0_ i , , i i i i i I J i i
1700.0 0.050

2700.0 0.050 _.-

1000.0 0.050

2010.0 0.3E-O5E. -
4000.0 0.3E-05_

2500.0 0.3E-05 E

COMP= 1.228

NAVG= 100

BW= I0.00 L ^ ..,,_ A...,,_,-._,_...,._

o.lz-osl -','-, , ,- __
ABCTEST Channel 2 S+ 0.00

' I ' ' ' ' I ' '

'Iv

q

.

H

Z

0.1E+O0_ ' ' i i , , l , I ' ' ' '
2700.0 0.050F [
1700.0 0.050 _r- I
I000.0 0.050

2010.0 0.3E-O5E. -

4080.0 0.3E-05_

7 LcoMP 1.22o I_ II II
NAvG=Zoo F: II II

 ,;,oooL _ JL
O.1E-05 , I

ABCTEST Channel 3 S+ 0.00

0.IE+00_0.0500.052LrF J ' ' l ' ' ' ' l ' ' ' ' l i , , i l ' ' I ,

0.050

0.3E-O5E_
0.3E-05_

i

I I

I ' ' ' ' I ' ' ' I' __

2700.0

1700.0

1000.0

2010.0

4080.0

250t0 0.3E-05 L
COMP 1.235

NAVG= 100

BW=IO'O_IE-OSL^--*"_'"_'.... 1-'-_ -, I""""-'

0
I'*_'_'_--V_k E _ I I I I I I I I

2000 3000 4000
FREQUENCY (HZ)

I000

Figure 3.2 PSD NFFT= 1024 NAVG= I00

I V

_S

Q

/
H

Z

S

q

5000

_)-a

2-b

2-C

1700.0

1300.0
810.0
820.0

4000.0

940.0

820.0
610.0

1390.0
4000.0
2110.0

2760.0

1?00.0
1390.0
610.0

820.0
4000.0

2110.0

1.0000

1.000

0.224

0.223
0.220

0.220
0.199

X= Channel 1
I I I I

I i I I I I I I I I I I

 od_ . i

0.0000 P"_" "lV!l "'iv "_,i.... |'
X= Channel 2

l.O000
0.225
0.223

0.222
0.218
0.207

0.199

NAVG-IOC

BW=IO.O0

[
r"

' ' I ' ' ' ' I ' ' ' ' I

X= Channel 3
-- I I I I i I I

. .

1000

0.0000

1.0000

0.729
0.224

0.223
0.221

0.218
0.207

NAVG-IOC

BW-IO.O0

0.0000

0

Figure 3.3

2000 3000 4000
Freq f3 (hz)

Bi-Coherence bxxx(WI= I000 Hz, W2)

I

1
I .

i

I T

I

I

5000

2.2.3.3 DSP Code Overview of bi-coherence function using Data Translation's DSP-

EZ programming language running on C40 DSP

The bi-coherence algorithm has been implemented on ASRI's TI-C40 DSP, using Data
Translation's DSP-EZ programming language. This section lists the complete DSP Codes
of it.

Complete codes of bi-coherence function b(mr,¢O) on C40 DSP using Data
Translation's DSP-EZ programming language

v I_......................... .{_

'1Bicoherence.DSP I
'-t- -1-

**** DSP Basic Program Global Declaration ****

Option Explicit
LI- "t-

'1Constants I
_"t'-................. '-i'-

Const CTRLchan = 0
Const PERCENTchan = 0
Const Col5chan=l
Const TimeChanl = 1
Const FFTChanl =2
Const BPTimeChan 1=3
Const B PFFTChan 1=4
Const ABSChanl=5
Const FILTchan = 6
Const FILTERPOINTS = 0
Const CUTOFFLower = 1

Const CUTOFFUpper -- 2
Const FILTER_SIZE =201
Const BUFFSIZE =2048

Const FFT_SIZE =2048
'-1-........... -t-

'l Arrays I
Lt- 1t-

Dim ADbuff As FloatArray
Dim BPFilter As FloatArray
Dim TimeData As FloatArray
Dim FFTdata As ComplexArray

Dim ImpulseResponse
Dim XX As ComplexArray
Dim PSD As FloatArray
Dim AA As ComplexArray
Dim BB As FloatArray
Dim CC As FloatArray
Dim BC As FloatArray

'-I- "t-"

'1Variables I
'+ +

Dim Frequency As Single
Dim FMax As Single

As FloatArray
' Bicoherence calculation

33

Dim dbScale As Single
Dim MaxFreq As Single
Dim MinFreq As Single
Dim Kmax As Single
Dim NumOfAvg As Single

' **** Function Main ****

Function Main()
k.[_................... +

'1Declaration[
t+ +

Dim cmdbuff As FloatArray
Dim Utilization As FloatArray
Dim DAdata As FloatArray
Dim
Dim
Dim
Dim
Dim
Dim

BHWnd As FloatArray
WndData As FloatArray
MagData As FloatArray
ZZ As ComplexArray
YY As ComplexArray
XX1 As ComplexArray

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

ADREADY As Integer
SampleTime As Single
RetrieveTime As Single
Parameterchecked As Integer
i, j, k, kount,m,n, ecode, Length, start,t ,d,p,DSize As Integer
bw, ref, nmax, Fs As Single
R1, R2, R3, R4, kref As Single

J 1 As Complex
J2 As Complex

Dim J3 As Complex

'1get the initial A/D frequency I

'kount = 0

Do While Not Host.GetDataReady(CTRLchan)

Loop
cmdbuff = Host.GetBuffer(CTRLchan)
Frequency = cmdbuff(0)
t t_{_

'] Define A/D parameters]
v_[_ _[_

AD.Frequency = Frequency
AD.ClockSource = DTDSP_ICLK

AD.TriggerSource = DTDSP_ITRG
AD.NumChannels = 1

AD.AcqMode = DTDSP_WRAP
AD.InternalChannelBufferSize = BUFFSIZE*2
I[_ _[_

'] Define D/A parameters]
_+ +

'DA.Frequency = Frequency
'DA.ClockSource = DTDSP_ICLK

34

'DA.TriggerSource = DTDSP_ITRG
'DA.NumChannels = 1

'DA.AcqMode = DTDSP_WRAP
'DA.InternalChannelBufferSize = BUFFSIZE*2
1"t- ... -I-

'1 initialize global array to all zeros I
f"_ ... Ji-

ImpulseResponse = GenLine(0,0,BUFFSIZE)
ImpulseResponse(BUFFSIZE/2) = FFT_SIZE
Do While Not Host.GetDataReady(CTRLchan)
Loop
'-I-...................... +

'1 initialize filter I
_-I-...................... -k-

ProcessControl0
t+ -I-

'1 generate Window Data l
Ill- --t-

BHWnd = GenWindow(BLACKMAN_HARRIS_61,BUFFSIZE)
dBScale = -20 * logl0(10*FFT_SIZE) + 6.0

SampleTime = 1.0/AD.Frequency * FFT_SIZE
RetrieveTime = 0

Utilization = GenLine(0,0,1)
'-I- +

'l start acquiring data l
'+ -I-

AD.ChannelType=DTDSP_DI
AD.Filter=AD.Frequency / 2
AD.Start0

' * Main looping *

I'1- ... -I"

'l acquire parameters from buffer

Fs=Frequency/2
bw=Fs/BUFFSIZE
nmax=BUFFSIZE/2
ref=500
Start =0

Length = BUFFSIZE/2
NumOfAVG= 10
ParameterChecked = 1

XX=GenComplexCos(0,0,10000,FFT_SIZE/2+ 1)

Do While ParameterChecked = 1

If Host.GetDataReady(Col5chan) Then
cmdbuff=Host.GetBuffer(Col5chan)

NumOfAvg=cmdbuff(0)
ref=cmdbuff(1)

End ff

PSD=GenLine(0,0,FFT_SIZE/2+ 1)
kref=ref/bw+0.5
kmax=nmax-kref

35

AA=GenComplexCos(0,0,10000,Kmax+l)
AA = AA * 0

BB=GenLine(0,0,Kmax+ 1)
CC=GenLine(0,0,Kmax+ 1)
B C=GenLine(0,0,FFT_SIZE/2+ 1)
For m = 1 To NumOfAVG

TimeStart0
ADbuff = AD.Scan (BUFFSIZE)

RetrieveTime = TimeRead0
TimeStop0

t'31- .. "1-

'1calculate average of % utilization
w'l- .. -t-

Utilization(0) = .6* Utilization(0)+.4*(((SampleTime-
RetrieveTime)/S ampleTime)* 100)

'1Extract data from buffer
t. l- -l-

i=0

TimeData = Extract(ADbuff, BUFFSIZE,i*BUFFSIZE)

'1put time history data to host for plotting
I. I_ .. _l-

k=i*5+l

If (Host.PutDataReady(k)) Then
Host.PutBuffer(k)=TimeData

End ff
1.1_ ...

'1Put FFT data to host for plotting
I]_ ... _1_

k = i'5+2

If (Host.PutDataReady(k)) Then
WndData=Window(BHWnd, TimeData)
FFTData=fft(WndData)
MagData=dB(FFTData)+dBScale

' Host.PutBuffer(k)=MagData
If Host.PutDataReady(PERCENTchan) Then

Host.PutBuffer(PERCENTchan) =
Utilization

End If
End If

_1- ...

' Calculate bicoherence
T. t- ...

XX=FFTData

Jl=XX(kref)
PSD = Abs(XX)
XX 1 = Extract(XX, Kmax + 1, 0)
ZZ = CopyVector(XX, Kref)
AA = AA + J1 * XX1 * Conjugate(ZZ)
BB = BB + Abs(J1 * XX1) * Abs(J1 * XX1)
CC = CC + Abs(ZZ) * Abs(ZZ)

Next m

36

For d=0 To kmax

BC(d)=Abs(AA(d)) * Abs(AA(d))/(BB(d)*CC(d))
Next d
For d= Kmax+l To Nmax

BC(d)=0
Next d

If Host.PutDataReady(BPTimechanl) Then
Host.PutBuffer(BPTimechanl)=BC
If Host.PutDataReady(PERCENTchan) Then

Host.PutBuffer(PERCENTchan) = Utilization
End If

End If
For d= 0 To nmax

PSD(d)= 10*log 10(PSD(d)/NumOfAvg)+ dBScale
Next d

If(Host.PutDataReady(ABSchan 1)) Then
Host.PutBuffer(AB Schan 1) = PSD

If Host.PutDataReady(PERCENTchan) Then

Host.PutBuffer(PERCENTchan) = Utilization
End If

End If

'1Upgrade filter if necessary

If (Host.GetDataReady(CTRLchan) And (AD.DataReady(0) < BUFFSIZE))
Then

ProcessControl0
End If

Loop 'End of Do While loop
End Function

' **** Function ProcessControl ****

Function ProcessControl0
Dim ctrlbuff As FloatArray
Dim FilterDataTemp As FloatArray
Dim FFTDataTemp As ComplexArray
Dim ready As Integer
Dim lowercut, uppercut As Single
Dim length As Integer
ready = TRUE
Do While ready

ctrlbuff = Host.GetBuffer(CTRLchan)

ready = Host.GetDataReady(CTRLchan)
Loop
Lt- -b

'l generate a band pass filter object I
I.[_[_

lowercut = ctrlbuff(CUTOFFLower)
uppercut =ctrlbuff(CUTOFFUpper)
length = ctrlbuff(FILTERPOINTS)
BPFilter = InitBandPassFilter(lowercut,uppercut,Frequency,length)
FilterDataTemp = Filter(BPFilter,ImpulseResponse)

37

FFTDataTemp = fft(FilterDataTemp)
FilterDataTemp = dB(FFTDataTemp)
FilterDataTemp = FilterDataTemp - 20*log 10(FFT_SIZE) + 6.0
Lt- "t-

'1 Send data to host for filter plotting I
IJi- -t-

Host.PutBuffer(FILTchan) = FilterDataTemp
End Function

' ** Function ApplyFFT() **

Function ApplyFFT(SomeData As FloatArray) As FloatArray
Dim Temp 1 As FloatArray
Dim Temp2 As ComplexArray
Dim BHWnd As FloatArray

B HWnd=GenWindow(BLACKMAN_HARRIS_61 ,BUFFSIZE)

Templ=Window(BHWnd, SomeData)
Temp2=fft(Temp 1)
ApplyFFT=dB (Temp2)+dBScale

End Function

' ** Function CopyVector **

Function CopyVector(XX As ComplexArray, SomeVal As Integer) As ComplexArray
Dim Temp As ComplexArray
Dim i As Integer

Temp = GenComplexCos(0,0,10000,Kmax+ 1)
For i = 0 To kmax

Temp(i) = XX(SomeVal + i)
Next i

CopyVector = Temp
End Function

' ** Function Conjugate **

Function Conjugate(SomeData As ComplexArray) As ComplexArray
Dim Temp As ComplexArray
Dim i As Integer
Dim rl, r2 As Single

Temp = GenComplexCos(0,0,10000,Kmax+ 1)
Temp = SomeData
For i = 0 To Kmax

rl = -Imag(Temp(i))
r2 = Real(Temp(i))
Temp(i) = MakeComplex(r2, rl)

Next i

Conjugate = Temp
End Function

38

2.2.4 Tri-Spectral Analysis - higher order coherence estimations among four
spectral components and modulation sideband

2.2.4.1 General background, algorithm and simulation example of tri-coherence
function

The auto-tri-coherence function has been implemented on a TI-C40 DSP, and has been

converted to MSFC's MPP system. The tri-spectral analysis can identify a different type

of correlation when four different spectral components are cubically correlated. A special

case of it application is to identify whether an apparent PSD sideband is due to

modulation or simply three independent waves. In machinery diagnostics, many failure

modes will cause amplitude modulation between an envelope signal and its carrier signal,

and, as a result, will generate a pair of sidebands around a center frequency component.

Therefore, such sideband phenomenon is commonly treated as an off-nominal signature.

The computer code for the tri-coherence program is currently being implemented and

tested on ASRrs C40/PC computer system. In addition, a simulation example to be used

by Vanderbilt for the verification of the tri-coherence program in the MPP system has

been designed, and will be provided to Vanderbilt. The complete codes in a conversion

format from ASRrs DSP system to Vanderbilt MGA Model Based Programming

environment will be transferred to Vanderbilt in the next reporting period. The technical

discussion in this report provides some background information to aide Vanderbilt's

programmers in implementing and testing the tri-coherence program.

The tri-spectrum represents a fourth joint moment among four different waves. For a

stationary random time series x(t), its fourth order cumulant spectrum, the tri-spectrum,
is defined as :

Txxxx ((.01,0)2,(_/)3) = E[X (0),) X (0)2) X (0)3) X* (0)1+ 0)2 + 0)3)]

-E[X(0)I)X(0)2)]E[X(0)3)X* (0)l + 0)2 + 0)3)]

-E[X(0),)X(0)3)]E[X(0)2)X*(0) 1q-0)2 + 0)3)]

-E[X(0) 2)X(0) 3)]E[X (0),)X* (0)1 + °92+ 0)3)]

(4.1)

Where X(o3) is the Fourier transform of x(t). And the tri-coherence is a normalized tri-

spectrum, normalized by the power of the four spectral components at wl, w2, w3 and

wl+w2+w3.

In general, the tri-spectrum Txxxx(Wl,W2,W3) is a function of three frequency arguments.

However, a special tricoherence function Tx(w) defined in equation 2 can be used to

identify the correlation within a PSD sideband pattern by fixing the first and second

frequency arguments, w 1 & w2, at the frequencies of two consecutive components within

a cluster of sidebands spaced by frequency A. This special tricoherence function can be

used to identify whether an apparent PSD sideband structure is due to modulation signal

or simply three totally independent components.

39

Tx (0)10),.,, 0).,2) = Txxxx (-0).,.1,0),i, 0)) = E[X*(0)s,)X(0).a)X(0))X*(-0),I + 0),2 + 0))]

-El (0),_)X(0),2)IE[X(0))X*(-0).,, +0),2 +0))] (4.2)

Where ms 1= Frequency of a S ideband component

ms2 = Frequency of the Next Sideband Component (i.e. ms2 = msl + A)

The auto tri-coherence, tx(W), a normalized tri-spectrum, is defined as:

t_ (col 0),._, 0)s2) ==
IT X (col 0)sl, 0)s2) 12

E[I X(0)s_) X(0),. 2)X(0))l 2]E[I X* (0),.1 + 0)._.2+ 0)) 12]

The discrete time formulation for the special tri-coherence function is:

^2

tx(0) 10Jsl, 0is2) =

NA

'Z
i=1

[X[(_%)X,(G2)X,(ro)X[(-(o.,. 1+ G2 + co)]- [X[(_o.,)X,(_o)][Xi(co,.2)x,*(-r% + roa + to)] 12

(4.3)

NA NA

{_,[Ix,*(co,,)x,(o<2)x,(_o)12]}{_lx'i(-c% + co,2+ co))121}
i=1 i=1

Where Xi(w) is the FFT of the i-th block ensemble average data

NA is the total number of ensemble average blocks

Due to

(4.4)

Ws 1= Frequency of a Sideband component

Ws2 = Frequency of the Next Sideband Component (i.e. Ws2 = w s 1 + D)

the existence of nonlinear phase correlation among the participating sideband

components, this special tri-coherence function should show a strong coherence peaks at

these sideband frequencies except at ms l as well as the last component within the

sideband sequence. Conversely, due to a lack of phase correlation, no coherence peak

will be identified for a sequence of independent (uncorrelated) spectral peaks. As a

result, this special tri-coherence function can discriminate between a modulation sideband

signal and independent sideband signal.

It should be pointed out that, the purpose of the second numerator term in equation (4.4):

IZ [X i (0),.1)Xi(0))][Xi(0)s2)Xi (--0)sl-1- 0)s2 -I- 0))] 12 (4.5)

^2

is to force tx (0) 10)sl, 0)s2) = 0 when w =Wsl ' since its tri-spectrum at this frequency

Tx (0).,.ll 0),.1,0)s2) = Txxxx (-0).,.1,0).,.2,0).,.1) = E[X*(0),._) X (0),.2) X (0),.1) X* (0) a)]

= E[I X* (0)sl) 12 I X (0)s2)[2]

4O

The frequency argument, co, of the special tri-coherence function, tx(W), is defined over a

frequency range from 0 to a maximum frequency COmax. This limit frequency for co is a

function of the reference frequency cos1, cos2 and the sampling frequency, since tx(W) is

only defined over the triangular region as shown in figure 4.1. Therefore the frequency

argument, co, should sweep through the entire first quadrant from 0 upto the -45 degree

boundary line which corresponding to the maximum frequency COrnax.

COs1q-(q2

_S 1"t-_S2 ::::::::::::::::::::::::: ::::::::::::::::::::::::::::

:" I_!!!!!!!iliiiiiiiiiiiiiiiiiiiiilliiiiiiiiiii::iiiiiliiiii!iiiiiiiiiii!iiiiiiiiiil

iiiiiii!iiiii iiiiiiiiiii!ii

COmax
6O

Figure 4.1 Frequency range for the special Auto Tri-Coherence Function

2.2.4.2 Simulation Example for Tri-Coherence Analysis Program

A simulation example has been designed and generated to demonstrate the sideband

identification capability of the tri-coherence function. The data of this simulation

example will also be provide to Vanderbilt for testing and verification of the tri-

coherence program in the MPP system. The modulation sideband signal x(t) is composed

of an envelop signal at frequency coe and drifting phase We(t), and a carrier signal at

frequency coc & phase _c(t). A small amount of Gaussian White Noise is added to the

signal. The sampling frequency is 10,240 Hz. The modulation (multiplication) between

the envelop and the carrier signal will generate a PSD side-band structure with left, center

and right side-band components at frequencies C0c-coe, c0c, and coc+coe respectively.

Notice that, not only the frequency becomes sum and difference, but also their phase

become sum and difference. Such phase correlation can be identified by using the special

tri-coherence. The independent sideband signal y(t) is composed of three independent

sine waves at frequency coc-coe, coc, coc+coe, and phase _L(t), _c(t) _R(t), respectively.

The PSD of this independent sideband signal will have an apparent side-band structure

with left, center and right side-band components at frequencies coc-coe, coc, and coc+coe

respectively. However, the phases among all these three waves within y(t) are totally

independent of each other.

43_

OI "0 90"0 90"0 I70"0

cq

sIMU/ATC
O.1E+03- ,

3000.0

3600.0

2400.0

3030.0

2965.0

3040.0

2960.0

2955.0

3052.5

16.258 =

0.I62 -

0.t52

0.012 :

0.009 -

0.009

0.008

0.008

0.008

COMP= 8.691

NAVG= 100

BW= 2.50

O.1E-02
0

0.1E+03

3000.0 16.257

2400.0 0. t46

3600.0 0.142

3030.0 0.012

2965.0 0.009

3040.0 0:009

2955.0 0.008

2960.0 0.008

3052.5 0.008

COMP= 8.691

NAVG= 100

BW= 2.50

O.1E-02
0

INDEPENDENT SIDEBAND

' I ' ' ' ' I
S+
I I

0.00

Left

. •

Center

f I I I

l i , I ' J l l

Right

Sideband

, I , , , , I , , , , I

1000 2000 3000
FREQUENCY (HZ)

SIMU/ATC MODULATION SIDEBAND S+ 0.00

, , , , I , , , , I , , , ,

1000 2000

Figure 4.3 PSD

I I I I l I I t I

4000

S

q

/
H

Z

_000

, I I I I i I | |

I , , , , I , , , ,

3000 4000

FREQUENCY (HZ)

V

S

IQ
/
H

Z

5000

1.0000
3912.5 0.288

3122.5 O.284

2092.5 0.257

50.0 0.245

1197.5 0.240

2047.5 0.235

2902.5 0.235

203?.5 0.234

3292.5 0.230

NAVG=I0C

BW=2.500

0.0000

X=INDEPENDENT SIDEBAND
' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

l

1 I I

1.0000

3000.0 0.883

2987.5 0.275

2597.5 0.267

3665.0 0.260

3852.5 0.258

2932.5 0.253

2545.0 0.250

50.0 0.240

1397.5 0.237

X=MODULATION SIDEBAND

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

[
NAVG= 1O0L

I=

0 1000 2000

¢

3000 4000

Freq f3 (hz)

SIMU/ATC T×xxx(f1=-2400.0,f2= 3000.0,f3),S+ 0.00

Figure 4.4 Tri-Coherence

| | I

!

5000

x(t) = (10 + 2 * cos[roet + l/te (t)]} COS[roet + l/tc (t)] + GWN (t)

y(t) = 10 * {cos[(ro c - roe)t + VL(t)] + cos[roct + Vc (t)] + cos[(ro c + roe)t + VR (t)]} + GWN (t)

Where me = 600 Hz

coc = 3000 Hz

Figure 4.2 and 4.3 shows the time histories and PSDs of x(t) and y(t). An apparent

sideband structure at 2400 Hz, 3000 Hz, and 3600 Hz is shown in both PSDs which are

almost identical to each other. From the time history and PSD, it is difficult to

discriminate between the independent and modulation sideband signal. This is because

their difference is hidden in the phase coupling relationship among different frequencies.

Figure 4.4 shows the special tri-coherence function for y(t) and x(t) with the first and the

second frequency arguments fixed at the negative left side-band (-2400 Hz) and the

center frequency (3000 Hz). The frequency of the tri-coherence is defined over the 0 to

4520 Hz (i.e. 5120-600 Hz). For the modulation sideband signal x(t), the tri-coherence

indeed identify a strong coherence at the center frequency, 3000 Hz, which indicates that

it is a true modulation generated side-band signal. While for the independent sideband

signal y(t), no significant correlation is identified since the apparent side-band in y(t) is

due to three totally independent waves. Therefore, the tri-coherence analysis successfully

discriminate between these 2 sideband signal which all have identical PSD.

2.2.4.3 DSP Code Overview of tri-coherence function using Data Translation's DSP-

EZ programming language running on C40 DSP

'+ +

'1TricCoherence.DSP I
'-I- +

**** DSP Basic Program Global Declaration ****

Option Explicit
'-t-4_

'1Constants I
"-t- -I-

Const CTRLchan = 0
Const Col5chan= 1
Const PERCENTchan = 0

Const TimeChanl = 1
Const FFTChanl =2
Const BPTimeChanl=3
Const BPFFTChan 1=4
Const ABSChan 1=5

Const TimeChan2 = 6
Const FFTChan2 =7
Const BPTimeChan2=8

45

Const
Const
Const
Const

Const
Const
Const
Const
Const

'+ "I-

'1Arrays I
'+ +

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

BPFFTChan2=9
AB S Chan2= 10
FILTchan = 11
RealChan = 12

Const FILTERPOINTS = 0
CUTOFFLower = 1

CUTOFFUpper = 2
FILTER_SIZE =201
BUFFSIZE =2048

FFT_SIZE =2048

ADbuff As FloatArray
BPFilter0 As FloatArray
BPFilterl As FloatArray
TimeData As FloatArray
FFTdata As ComplexArray
ImpulseResponse As FloatArray
XX As ComplexArray ' Tricoherence calculation
PSD As FloatArray
AA As ComplexArray
BB As FloatArray
CC As FloatArray
BC As FloatArray

'+ +

'1Variables I
'-I-................ jr

Dim Frequency As Single
Dim FMax As Single
Dim dbScale As Single
Dim MaxFreq As Single
Dim MinFreq As Single
Dim NumOfAvg As Single

, _>___

' **** Function Main ****
, >___<_

Function Main()
"Jr q-

'1Declaration I
'q- q-

Dim cmdbuff As FloatArray
'Dim Utilization As FloatArray
'Dim LossRatio As FloatArray
Dim DAdata As FloatArray
'Dim BHWnd As FloatArray
'Dim WndData As FloatArray

Dim MagData As FloatArray
Dim ADREADY As Integer
'Dim SampleTime As Single
'Dim RetrieveTime As Single
Dim Parameterchecked As Integer
Dim i, j, k, kount,m,n, ecode, Length, start,t ,d,p,DSize As Integer
Dim refl, ref2 As Single

46

t__ .. dr

'1get the initial A/D frequency I

'kount = 0

Do While Not Host.GetDataReady(CTRLchan)
Loop
cmdbuff = Host.GetBuffer(CTRLchan)
Frequency -- cmdbuff(0)
I. t - d I-

'1Define A/D parameters I
t-t- -t-

AD.Frequency = Frequency
AD.ClockSource = DTDSP_ICLK

AD.TriggerSource = DTDSP_ITRG
AD.NumChannels = 2

AD.AcqMode = DTDSP_WRAP
AD.InternalChannelBufferSize = BUFFSIZE*2
tq_ -t-

'1Define D/A parameters I

'DA.Frequency = Frequency
'DA.ClockSource = DTDSP_ICLK

'DA.TriggerSource = DTDSP_ITRG
'DA.NumChannels = 1

'DA.AcqMode = DTDSP_WRAP
'DA.InternalChannelBufferSize = BUFFSIZE*2

'1 initialize global array to all zeros I
I't- ... -Ji-

ImpulseResponse = GenLine(0,0,BUFFSIZE)
ImpulseResponse(BUFFSIZE/2) = FFT_SIZE
Do While Not Host.GetDataReady(CTRLchan)
Loop
'-I- -t-

'1 initialize filter I
_-t-...................... -t-

ProcessControl0
td I--_

'1generate Window Data I
'"1-..................................... -.I-

'BHWnd = GenWindow(BLACKMAN_HARRIS_61,BUFFSIZE)

dBScale = -20 * logl0(10*FFT_SIZE) + 6.0
'SampleTime = 1.0/AD.Frequency * FFT_SIZE
'RetrieveTime = 0

'Utilization = GenLine(0,0,1)
'LossRatio = GenLine(0,0,1)

'1 start acquiring data l
'"1-................................ q-

AD.ChannelType=DTDSP_DI
AD.Filter=AD.Frequency / 2
AD.Start0

47

' * Main looping *
, ___:_:_g_

refi=]000

ref2=3000

' refl = first reference frequency specified by user
' ref2 = second reference frequency specified by user
Start =0

Length = BUFFSIZE/2
NumOfAVG= 10
ParameterChecked = 1
Do While ParameterChecked = 1

If Host.GetDataReady(Col5chan) Then
cmdbuff=Host.GetBuffer(Col5chan)
NumOfAvg=cmdbuff(0)
refl=cmdbuff(1)
ref2=cmdbuff(2)

End If
"l- ..

I Calculate tricoherence

-_- ..

TriCoherence(refl, ref2)
t. I- ... d I-

'1Upgrade filter if necessary
t"l- .. -I-

If (Host.GetDataReady(CTRLchan) And (AD.DataReady(0) < BUFFSIZE))
Then

ProcessControl0
End If

Loop 'End of Do While loop
End Function
, _:____:_:_

' **** Function ProcessControl ****
, _:_:__:_:_:__:_

Function ProcessControl0
Dim ctrlbuff As FloatArray
Dim FilterDataTemp As FloatArray
Dim FFTDataTemp As ComplexArray
Dim ready As Integer
Dim lowercut, uppercut As Single
Dim length As Integer
ready = TRUE
Do While ready

ctrlbuff = Host.GetBuffer(CTRLchan)
ready = Host.GetDataReady(CTRLchan)

Loop
_dl- "JI-

'1 generate a band pass filter object I
'-I-.................................... ar

lowercut = ctrlbuff(CUTOFFLower)

uppercut =ctrlbuff(CUTOFFUpper)
length = ctrlbuff(FILTERPO1NTS)
BPFilter0 = InitBandPassFilter(lowercut,uppercut,Frequency,length)
BPFilterl = InitBandPassFilter(lowercut,uppercut,Frequency,length)
FilterDataTemp = Filter(BPFilter0,ImpulseResponse)

48

FFTDataTemp = fft(FilterDataTemp)
FilterDataTemp = dB(FFTDataTemp)
FilterDataTemp = FilterDataTemp - 20*logl0(FFT_SIZE) + 6.0
I1_1_

'1 Send data to host for filter plotting I
t. k. q-

Host.PutBuffer(FILTchan) = FilterDataTemp
End Function

' ** Function ApplyFFT() **

Function ApplyFFT(SomeData As FloatArray) As FloatArray
Dim Templ As FloatArray
Dim Temp2 As ComplexArray
Dim BHWnd As FloatArray

BHWnd=GenWindow(BLACKMAN_HARRIS_61 ,BUFFSIZE)

Temp 1=Window(BHWnd, SomeData)
Temp2=fft(Temp 1)
ApplyFFT=dB (Temp2)+dB Scale

End Function

' ** Function TriCoherence0 **

Function TriCoherence(refl 1 As Single, ref22 As Single)
Dim ProcessTime As Single
Dim SampleTime As Single
Dim RetrieveTime As Single
Dim LossRatio As FloatArray
Dim BHWnd As FloatArray
Dim WndData As FloatArray
Dim Utilization As FloatArray
Dim kref, krefl, kref2, kmax As Single
Dim bw, nmax, Fs As Single
Dim R1, R2, R3, R4 As Single
Dim JJ1 As Complex
Dim JJ2 As Complex
Dim J1 As Complex
Dim J2 As Complex
Dim J3 As Complex
Dim d, j, i, m As Integer

'l generate Window Data I
_d-..................................... d-

BHWnd = GenWindow(BLACKMAN_HARRIS_61,BUFFSIZE)

SampleTime = 1.0/AD.Frequency * FFT_SIZE
RetrieveTime = 0

Utilization = GenLine(0,0,1)
LossRatio = GenLine(0,0,1)

'1acquire parameters from buffer
_"1- ... '4-

Fs=Frequency/2
bw=Fs/BUFFSIZE
nmax=BUFFSIZE/2

49

XX=GenComplexCos(0,0,10000,FFT_SIZE/2+I)
krefl =refl 1/bw+0.5
kref2=ref22/bw+0.5
kref=kref2-krefl
kmax=nmax-kref

ProcessTime = 0

j=AD.NumChannels- 1
For i= 0 To j
II _1_ ..

'1 Initialize global array I
I -If" ..

PSD = GenLine(0,0,FFT_SIZE/2+I)
AA = GenComplexCos(0,0,10000,FFT_SIZE/2+ 1)

AA = AA * 0

BB = GenLine(0,0,FFT_SIZE/2+ 1)
CC = GenLine(0,0,FFT_SIZE/2+I)
B C = GenLine(0,0,FFT_SIZE/2+ 1)

For m = 1 To NumOfAVG

TimeStart0
ADbuff = AD.Scan (BUFFSIZE)
RetrieveTime = TimeRead0

TimeStop0
_d I- ,-I-

'1Extract data from buffer
t-t_....................................... q_

TimeData = Extract(ADbuff, BUFFSIZE,i*BUFFSIZE)

I'll- .. "1-

'1calculate average of % utilization
..1-[

Utilization(0) = .6* Utilization(0)+.4*(((SampleTime-

RetrieveTime)/S ampleTime)* 100)
TimeStart0

I{_ ...

'1Put FFT data to host for plotting
I_1_ ... -Jl-

WndData=Window(BHWnd, TimeData)
FFTData=fft(WndData)

I.J I- ...

' Calculate tricoherence
I.t_ ...

XX=FFTData

JJl=XX(krefl)
JJ2=XX(kref2)
RI= -Imag(JJ1)
R2= Real(JJ 1)
J2=MakeComplex(R2, R1)
J 1=J2*JJ2
For d=0 To nmax

Rl=Abs(XX(d))
PSD(d)= PSD(d)+ RI*R1

Next d

' PSD = PSD + Abs(XX)*Abs(XX)
For d=0 To kmax

'conjg (JJ1)

50

R 1= -Imag(XX(d+kref))
R2= Real(XX(d+kref))
J2=MakeComplex(R2, R1)
AA(d)=AA(d)+J 1*XX(d)*J2
R3=Abs(JI*XX(d))
BB(d)=BB(d)+R3*R3
R4=Abs(XX(kref+d))
CC(d)=CC(d)+R4*R4

Next d
I. I- ..

'1put time history data to host for plotting
t'31- .. -l-

If (Host.PutDataReady(TimeChan 1+i'5)) Then
Host.PutBuffer(TimeChan 1+i* 5)=TimeData
If Host.PutDataReady(PERCENTchan) Then

Host.PutBuffer(PERCENTchan) = Utilization
End If

End If

Next i
End Function

ProcessTime = TimeRead0
TimeStop0
LossRatio(0)=SampleTime/(RetrieveTime+ProcessTime) * 100
If Host.PutDataReady(Realchan) Then

Host.PutBuffer(Realchan) =LossRatio
End ff

Next m
For d=0 To kmax

BC(d)=Abs(AA(d)) * Abs(AA(d))/(BB(d)*CC(d))
Next d
For d= Kmax+l To Nmax

BC(d)=O
Next d

set tri-coherence =0 at w=w s 1 and its two surrounding bins
BC(krefl)=0
BC(krefl+l)=0
BC(krefl-1)=0

If Host.PutDataReady(BPTimechan 1+i'5) Then
Host.PutBuffer(BPTimechanl+i*5)=BC

End If
For d= 0 To nmax

PSD(d)= 10*log 10(PSD(d)/NumOfAvg)+ dBScale
Next d

If(Host.PutDataReady(ABSchan 1+i'5)) Then
Host.PutBuffer(ABSchan 1+i'5) = PSD

End If

53

2.2.5 Envelope Detection Method - Demodulation of envelope signal using Hilbert
Transform

2.2.5.1 General background, algorithm and simulation example of high frequency
envelope analysis

The envelope detection method for bearing fault detection is based on the observation

that the bearing characteristic frequency may modulate structural or sensor resonant

frequencies excited by defect impacts. This impact will produce transient ringing pulses

at the impact repetition rate (the modulating frequency). The harmonics of such impact

excitation extend well into the high frequency region (10 KHz - 100 KHz) and excite the

structural or the sensor resonant frequencies. The resonant response of this motion is

detected and refereed to as the carrier frequency. What is of interest however is not the

carrier frequency, rather the modulating frequency of the carrier (impact rate). Use of an

amplitude demodulation algorithm such as the Hilbert Transform will retrieve the

modulating frequency in the resulting envelope signal, and as a result, indicate the faulty

component.

Consider a vibration signal due to periodic impact on a structure with resonant frequency

w c. Assuming that, each impact will ring the structure at a dominant frequency w c, and

the waveform will repeat itself with a repetition rate equal to the periodic impact rate. In

the time domain, this signal can be modeled as an envelope signal e(t) multiplied by a

carrier signal as:

x(t) = e(t) cos[Wct+f(t)] (5.1)

The envelope represents the periodic impact with a dominant frequency w e, and the

carrier represent the structural response at natural frequency wc. In the frequency

domain, its PSD will have a side-band structure with left, center and right sideband.

Notice that, it is not sufficient to determine the envelope signal just from this measured

signal alone. This signal x(t) can be treated as the real part of a complex signal whose

imaginary part y(t) is equal to the envelope e(t) multiplied by this sine wave with identical

phase drifting. If such imaginary part signal can be found, then the envelop signal is just

equal to the amplitude of the complex signal. It can be shown that, if the frequency of the

envelop signal is much smaller then the carrier frequency w c, then this imaginary part

signal y(t) is just equal to the Hilbert transform of the real part signal x(t), which is

equivalent to perform a 90 degree phase shift of x(t).

y(t) = HT [x(t)] = x(t) * h(t) = IFT [X(w) H(w)] (5.2)

Where : H(w) = Transfer Function of 90 degree phase shiftor = -j sgn(w) (5.3)

HT = Hilbert Transform

IFT = Inverse Fourier Transform

52

Therefore, in the time domain, y(t) is equal to the convolution of x(t) and the impulse

response function (IRF) of the HT h(t). In the frequency domain, Y(w) is simply equal to

X(w)H(w). The transfer function H(w) will have unity amplitude with 90 degree phase

at positive frequency and -90 degree phase at negative frequency. Therefore, the

imaginary signal can be estimated by taking the FFT of the real part signal x(t), multiplied

by the transfer function H(w) of HT, and then followed by an IFFT to generate the

imaginary part signal y(t). The envelop signal then can be recovered through the

amplitude of x(t) & y(t).

2.2.5.2. Algorithm/Code of Envelope Analysis Program

Figure 5.1 shows the signal processing algorithm for high frequency envelope analysis

using Hilbert transform technique. The input measurement signal x(t) after bandpass

filtered can be modeled as a low frequency envelope signal e(t) multiplied by a high

frequency carrier signal with a center frequency wc and phase drifting f(t).. The purpose

here is to recover the low frequency envelop signal e(t) from the high frequency

measurement signal. The major function of the Hilbert Transform within this algorithm

is to find its corresponding imaginary part signal from the real part measurement signal.

Since the amplitude of the transfer function of HT is one across the entire frequency, and

the phase of the transfer function of HT is -90 degree at all positive frequency and 90

degree phase at all negative frequency. Therefore, the desired imaginary part signal y(t)

is simply equal to the HT of the real part signal x(t). This is equivalent to performing a

90 degree phase shifting of x(t). The HT operation can be effectively implemented in the

frequency domain, as shown in the algorithm, and the envelop signal is obtained from the

amplitude of the complex analytical signal z(t).

Figure 5.2 shows an example of the envelope analysis. The raw time history shown in

figure 5.2(a) is taken from a dynamic pressure measurement during an ATD HPOP

Inducer test at NASA/MSFC's ITL (Inducer Test Leg) water flow test facility. The

"bursting" waveform in the raw time history is generated due to cavitation-generated

bubble collapsing process. Such cavitation phenomenon can be detected by performing

spectral analysis on the envelope signal of the time history instead of the time history

itself. Figure 5.2(b) shows the resulting envelope signal which "envelopes" the original

time history. The periodicities of the bursting waveform in the original time history can

be detected from the PSD of the envelope signal. Figure 5.3(a) shows the RAW PSD of

the original signal which has been bandpass filtered from 6 KHz to 10 KHz. Figure

5.3(b) shows the resulting ENVELOPE PSD, where strong 4N component (280 Hz) along

with its harmonics are recovered as an indication of full-blade (4-blade) cavitation

condition.

53

x(t)

Band IPass

L.

x(t) = e(t) cos[¢o ct+_p(t)]

__ _ 900 Phase ShiftFFT H(co)= .j sgn(o_)

y(t)= e(t)

sin[_o ct+_(t)]

DECIM-ATION

j e(t)

Envelope [

Measured Bandpass Signal x(t) = e(t) cos[
90 o Phase Shifted Signal y(t)= e(t)sin[

Oct + _p(t)]

C0ct+ _p(t)]

=> Analytical Signal z(t) = x(t) + j y(t) = e(t) exp j[co ct + _)(t)]

• H(o_) = Transfer Function of 90 o Phase Shiftor = -j sgn(o_)

IH(_)I

H(co)= f" exp(

mj _/2)

_exp(+j 7r/2)

foro_ >0 co

foro_ <0

_(co)

-_12

_/2

Figure 5.1 Envelope Analysis Algorithm using

v

mu.
v

o)

Hilbert Transform

54

0_

°f--,I

O_

6

tO
o

i d

o

o

I I I I , , ,_

0
o

Cu
o

, o_
O0
o
_J

d
I

55

¢

----4-

IL

l

I

(11

t_

ITL-7 KA 6- IOK S+ 2.00

O.1E-05 ' ' ' I ' ' ' I ' ' ' I ' ' I ' ' '
180.0 0.7E-07

300.0 0.3E-07

60.0 0.3E-07

I I I I I I I I I I I

540.0 0.3E-08

660.0 O.1E-08

420.0 0.5E-09

780.0 0.4E-09

1220.0 0.2E-Og

1260.0 0.gE- 1(]

COMP= 0.014

NAVG= 14

BW= 5.00

O.1E-11
0

I , , , I , I
2000 4000 6000 8000

FREQUENCY {HZ)

2.00
I

O.1E-04

280.0 0.9E-05

560.0 0.2E-05

643.8 _).8E-06

840.0 0.4E-06

933.8 0.2E-06

55.0 0.4E-06
=

222.5 0.7E-06i

348.2 0.3E-06

142.5 0.5E-06

COMP= 0.012

NAVG = 3

BW= 1.25

O.1E-06
0

ITL-7/ENV KA 6-10K
i J [

I I I

V

S

Q

/
H

Z

I

10000

S+

'L _ ' ' ' ' _1' ' ' ' ' ' ' ' :

Figure 5.3

V

S

q

/

H

Z

I , , , I , , , I , , , I , , ,
200 400 600 800 tO00

FREQUENCY (HZ)

(a) RAW PSD (b) ENVELOPE PSD of ITL test dat_

2.2.5.3 DSP Code Overview of envelope analysis using Data Translation's DSP-EZ

programming language running on C40 DSP

The complete codes for the envelope analysis program running on C40 DSP using Data

Translation's DSP-EZ programming language is listed below.

Lt- "t-

'l Envelop.DSP I
Lt- -1-

**** DSP Basic Program Global Declaration ****

Option Explicit

'l Constants I
'-t- "4-

Const CTRLchan = 0
Const Userchan= 1
Const FILTChan = 16

'channel for getting frequency & filter info. from user
'channel for getting user defined parameters

Const FILTERPOINTS = 0
Const CUTOFFLower = 1

Const CUTOFFUpper = 2
Const FILTER_SIZE -201

'+ +

'1Arrays I

Dim ADbuff As FloatArray

Dim ImpulseResponse As FloatArray
Dim BPFilter0 As FloatArray
Dim BPFilterl As FloatArray
Dim TimeData As FloatArray
Dim FilterData As FloatArray
Dim PSD As FloatArray

Lt-................ "t-

'1Variables I
Lt-4-

Dim Frequency As Single
Dim BUFFSIZE As Integer
Dim FFT_SIZE As Integer
Dim nmax As Integer
Dim Decimation As Integer

'Global for ProcessControl

'FFT_SIZE >= BUFFSIZE

**** Function Main ****

Function Main()

57

'+ -I-

'1Declaration I
_+ "t-

Dim cmdbuff As FloatArray
Dim
Dim
Dim
Dim
Dim
Dim
Dim

DAdata As FloatArray
Channel As FloatArray
FWArray As FloatArray

TFWArray As FloatArray
SFW As FloatArray
Sum As FloatArray
T As FloatArray

Dim
Dim
Dim

Dim
Dim

SCount As Integer
NumOfAVG As Integer
AVG2 As Integer
ADREADY As Integer
NumPSDChd As Integer

Dim i, j, k, n, Length, start As Integer
Dim bw, ref, Fs As Single

FFT_SIZE =2048
BUFFSIZE =2048

nmax=FFT_SIZE/2 + 1
Start=0

Length=nmax
NumOfAvg=l
AVG2= 1
Decimation = 1

Channel =GenLine(0,0,16)

I.J I- ..

'1get the initial A/D frequency I
t-l- .. "Ji-

Do While Not Host.GetDataReady(CTRLchan)

Loop
cmdbuff = Host.GetBuffer(CTRLchan)

Frequency = cmdbuff(0)
FFT_SIZE = cmdbuff(1)

If Host.GetDataReady(UserChan) Then
cmdbuff=Host.GetBuffer(UserChan)
NumPSDChd = cmdbuff(0)
For i = 1 To NumPSDChd

Channel(i- 1) = cmdbuff(i)
Next i

End If
_-I-.................................... q-

'1Define A/D parameters I
v-I- -Ji-

AD.Frequency =Frequency
AD.ClockSource = DTDSP ICLK

AD.TriggerSource = DTDSP_ITRG
AD.NumChannels = 8

58

AD.AcqMode = DTDSP_NORMAL
AD.InternalChannelBufferSize = BUFFSIZE * 4
I. t - -_-

'1Define D/A parameters I
t. I_..................................... q-

'DA.Frequency = Frequency
'DA.ClockSource = DTDSP_ICLK

'DA.TriggerSource -- DTDSP_ITRG
'DA.NumChannels = 1

'DA.AcqMode = DTDSP_Normal
'DA.InternalChannelBufferSize = BUFFSIZE*3
v._1_

'i initialize global array to all zeros I
I j/_1_

ImpulseResponse = GenLine(0,0,BUFFSIZE)
ImpulseResponse(BUFFSIZE/2) = FFT_SIZE
Do While Not Host.GetDataReady(CTRLchan)

Loop
'"t- q-

'1 initialize filter I
v.t- q-

ProcessControl0
'-I- q-

'1start acquiring data i
tq,. q_

AD.ChannelType=DTDSP_DI
AD.Filter=AD.Frequency / 2
AD.Start0

' * Main looping *

it_ ... ___

'l acquire parameters from buffer
t.J I- ... -l-

Do While 1

If Host.GetDataReady(Userchan) Then
cmdbuff=Host.GetBuffer(Userchan)

NumOfAVG=cmdbuff(0)
Start=cmdbuff(1)
Length = cmdbuff(2)
Decimation = cmdbuff(3)
Sum = Sum * 0
SCount = 0

End If
-1- "t-

' IExtract data from buffer
I .1_

Sum = Sum * 0
SFW = SFW * 0
If NumOfAVG < Decimation Then

AVG2 = 1
Else

AVG2 = NumOfAVG/Decimation

End If

59

FFT_SIZE)

Forj = 1To AVG2
Fori = 1To Decimation

ADbuff = AD.Scan(FFT_SIZE)
TimeData= Extract(Adbuff,FFT_SIZE,Channel(0)*

II FilterData = Filter(BPFilter0, TimeData)
FilterData = HilbertTransform(FilterData)

TFWArray =ApplyDecimation(Channel(0), FilterData)

If i = 1 Then

FWArray = TFWArray
Else

FWArray = FWArray & TFWArray
End If

PSD = ApplyFFT(TimeData)
Sum = Sum +PSD

Next i

SFW=SFW + Abs(FWArray)
Nextj
If NumOfAVG + Decimation < 4 Then

T = AD.Scan(FFT_SIZE)
End If

If Host.PutDataReady(Channel(0)) Then
Host.PutBuffer(Channel(0)) = Sum/NumOfAVG

End If

If Host.PutDataReady(Channel(0) + 8) Then
Host.PutBuffer(Channel(0) + 8) = ApplyFFT(SFW/AVG2)

End If

If (Host.GetDataReady(CTRLchan) And (AD.DataReady(0) <
FFT_SIZE)) Then

ProcessControl0
End If

Loop 'End of Do While loop

End Function
I

' **** Function ProcessControl ****

Function ProcessControl0
Dim ctrlbuff As FloatArray
Dim FilterDataTemp As FloatArray
Dim FFTDataTemp As ComplexArray
Dim ready As Integer
Dim lowercut, uppercut As Single
Dim length As Integer

ready = TRUE
Do While ready

ctrlbuff = Host.GetBuffer(CTRLchan)
ready = Host.GetDataReady(CTRLchan)

Loop

6O

'1generate a band pass filter object I
t't- ... -t-

length = ctrlbuff(FILTERPOINTS)
lowercut = ctrlbuff(CUTOFFLower)

uppercut =ctrlbuff(CUTOFFUpper)
BPFilter0 = InitBandPassFilter(lowercut,uppercut,Frequency,length)
BPFilterl = InitBandPassFilter(lowercut,uppercut,Frequency,length)
FilterDataTemp = Filter(BPFilter0,ImpulseResponse)
FFTDataTemp = fft(FilterDataTemp)
FilterDataTemp = dB(FFTDataTemp)
FilterDataTemp -- FilterDataTemp - 20*logl0(FFT_SIZE) + 6.0
w i___

'1Send data to host for filter plotting I

Host.PutBuffer(FILTchan) = FilterDataTemp
End Function

** Function ApplyFFT() **

** Calls: Window, fit, dB **

Function ApplyFFT(SomeData As FloatArray) As FloatArray
Dim Templ As FloatArray
Dim Temp2 As ComplexArray
Dim BHWnd As FloatArray
Dim dBScale As Single

dBScale = -20 * logl0(10*FFT_SIZE) + 6.0
B HWnd=GenWindow(BLACKMAN_HARRIS_61 ,FFT_SIZE)

Temp l=Window(BHWnd, SomeData)
Temp2=fft(Temp 1)
ApplyFFT=dB (Temp2)+dB Scale

End Function

' ** Function Conjugate **

Function Conjugate(A As Complex) As Complex
Dim rl, r2 As Single

rl = Real(A)
r2 = -Imag(A)
Conjugate = MakeComplex(rl, r2)

End Function

' ** Function ApplyDecimation(Channel_ID, InArray)
' ** return decimated partial array

Function ApplyDecimation(Channel_ID As Integer, InArray As FloatArray) As

FloatArray
Dim TArray As FloatArray
Dim PArray As FloatArray
Dim i, Size As Integer

63_

End Function

Size = FFT_SIZE/Decimation

TArray = GenLine(0,0, FFT_SIZE)
PArray = GenLine (0,0, Size)
TArray = InArray

If Decimation= 1 Then

ApplyDecimation = TArray
Else

For i= 0 To Size-1

PArray(i) = TArray(Decimation * i)
Next i

ApplyDecimation = PArray
End If

** HilbertTransform(InArray As FloatA1xay)
** FFT(InArray) Then HilbertTransfor Then IrFFT
** InArray = FilterData

_unction HilbertTransform(InArray As FloatArray) As FloatArray
Dim XX As ComplexArray
Dim YY As ComplexArray
Dim RR As FloatArray
Dim ZZ As FloatArray
Dim Xr As FloatArray
Dim Xi As FloatArray
Dim X2 As FloatArray
Dim Y2 As FloatArray
Dim i As Integer

ZZ = GenLine(0,0, FFT_SIZE)
XX = fft(InArray)
Xr =- Real(XX)

Xi = Imag(XX)
YY = MakeComplex(Xi, Xr)
RR = irfft(YY)
X2 = InArray * InArray
Y2 = RR * RR

For i = 0 To FFT_SIZE - 1

ZZ(i) = (X2(i) + Y2(i)) ^ .5
Next i
HilbertTransform= ZZ

End Function

62

2.2.6 GHC - Generalized Hyper-Coherence Analysis

2.2.6.1 General background, algorithm and simulation example of Generalized
hyper-coherence function

In a rotor system, the fundamental shaft rotational component can be treated as a driving

source which drives some other rotational mechanisms and generates new spectral

components at different frequencies such as cage frequency or outer ball pass frequency

associated with bearing defect. These two different frequency components are correlated

to each other in a particular nonlinear fashion due to its kinematic geometry. Since the

frequency ratio of these two components is arbitrary, the nonlinear higher order

cumulant spectral analysis, such as bi-spectrum and tri-spectrum would not be able to

identify such correlation. The Generalized hyper-coherence (GHC) can identify their

correlation by correlating their instantaneous frequency signal since the rate of change of

their instantaneous phases should be synchronize with each other. Consider a gear box

example with non-integer gear ratio R. Assuming that the first gear with M1 teeth is

driving the second gear with M2 teeth. The angular displacements (phases) at frequencies

N1 and N2 will be proportional to each other, and these two spectral components are

correlated in such a way that their phase variation are synchronous to each other.

Assuming perfect gear mesh with no broken or worn gear tooth, ff gear 1 goes through

one cycle of rotation with angular displacement a(t), then gear 2 will finish R cycle of

rotation with angular displacement R*a(t). In other word, their angular displacement will

be proportional to each other by a factor of R. As a result, certain coherent phase

relationship would exist between the spectral components at frequencies N1 and N2.

However, in general the gear ratio R (MI/M2) would be an non-integer number.

Therefore, such phase coherence become very difficult to identify due to the ambiguity

introduced by the Riemann surface phase wrapping in the phase estimation. Based on

this observations, the GHC was developed to identify such phase coherence by correlating

the rate of change of their phases, which is also called the instantaneous frequency. By

taking the rate of change of phase, the ambiguous phase term will be eliminated, and their

phase correlation will now be reflected in the frequency domain as frequency

synchronization.

If a vibration signal is treated as an FM signal with different spectral components at

different center (carrier) frequencies. Assuming that, there is some intelligence being

frequency modulated in the vibration signal as the instantaneous frequency at these

different carrier frequency. In order to recover the intelligence, we need to demodulate

the FM signal to estimate its instantaneous frequency signal. A narrow band random

process can be modeled as a sine wave with slowly varying amplitude A(t) and phase p(t):

x(t) = A(t) cos[_c t + qo(t)] (6.1)

The instantaneous frequency Wi(t) is defined by:

d q_(t)
coi(t) =

dt
(6.2)

63

x(t)

2 cos(%t)

'P °I
FILTER dt

A(t) cos[q_(t)]

___ A(t) sin[_t)___

LP d -
--" FILTER dt _ '

[Square

Figure 6.1

; _ X

Square }

_(t)

Frequency Demodulation Using Synchronous Receiver

)

Figure 6.1 shows the block diagram of an FM demodulator using the Synchronous

Receiver method. The input signal may contain several spectral components (FM signal)

at different carrier frequencies. Here, the 90 degree phase shifting is performed through

the multiplication of a locally generated sinusoid and cosine waves (synchronous

receiver) at the desired carrier frequency wc. This will effectively shift the spectral

component from the carrier frequency wc to both zero frequency and two times of that

frequency. A low-pass filter is then used to remove any high frequency component. The

output of the low-pass filters represent the slowly varying amplitude and phase (i.e. A(t)

exp[j q_(t)]). The instantaneous frequency signal wi(t) then can be obtained by,

wi(t)= _(t)- u(t)v(t)-u(t)v(t) (6.3)
u2(t)+v2(t)

Where u(t) = A(t) cos [q)(t)]
v(t) = A(t) sin [q0(t)]

For the purpose of identifying frequency synchronization for machinery diagnostics. Just
imagine that the vibration signal is composed of several FM signal modulated at different
carrier frequency. Each component is then passing through an FM-demodulator to
generate a series of new random signal representing the instantaneous frequency signal at
each carrier frequency. A linear correlator is then used to correlate among these
instantaneous frequency signal with a specified reference carrier frequency. Their
correlations are then summarized in the frequency domain to generate the GHC, which
indicates the degree of frequency lock-in between the reference component and any other
spectral component at arbitrary frequency. Figure 6.2 shows the flow diagram of the GHC

program.

64

GHC Menu : NDEC=GHC Decimation Cycle

for each GHC tracking component, Request 3 parameters:

(1) Fc (2) LPBW (3) Filter Order=Order

• Fs= sampling frequency in Hz

• NN=block size (or buffersize)

• Fc=Center frequency in Hz

• LPBW = low pass bandwidth in Hz

• Define Pinc=2p*Fc*NN/Fs

• Define MM=NN/NDEC (Note: NN/NDEC must be integer)

Program start (or re-start):

• initial phase by setting phs=O

• initialzl(O) =z2(O)=O

• greate two filter object filterl & filter2 with identical filter setting:

lower cutoff frequency = 0

higher cutoff frequency = LPBW
filter order = order

1. get one block of data raw(t) array

2. generate (cos + j sin) array using GENCOSCOMPLEX with:

Phase: phs = phs + Pinc

frequency = Fc

Sampling frequency =Fs

Arraysize = NN

break complex (cos +j sin) array into xx0 & YY0 array for real & imaginery pary

3. generate xx= 2*raw*xx

yy= -2*raw*yy

4. use filterl to perform low-pass filter of xx: xx=lowpass filterl of xx

use filter2 to perform low-pass filteri of yy: yy=lowpass filter2 of yy

5. average/decomation:

Array zl (1 to MM) =xx(1 to NN) with NDEC point average and decimation

Array z2 (1 to MM) =yy(1 to NN) with NDEC point average and decimation

6. Calculate Instantaneous frequency Array IFQ0 using equation (3)

wi(t = O(t)= u(t)v(t)- u(t)v(t)
u2(t)+v2(t)

Note for New Phase update: T= time period of one clock

1st block = cos(O3ct+f 0)

2nd block = cos[O_ct +(wcT+f0)]

=> phase increment = 03cT = 2p*Fc*NN/Fs

Figure 6.2 GHC Program Flow Diagram

2.2.6.2. Simulation Example for GHC Analysis Program

65

A set of simulation data has been generated which will be used by both ASRI and
Vanderbilt to test and evaluate the performance of the GHC program in the MPP system.
The simulation signal is composed of three spectral components:

1. Reference component
2. Correlated Component
3. Uncorrelated Component

The first component represents the Synchronous frequency component at 1000 Hz. The
second one represents a Sync-related component at 2600 Hz whose instantaneous
phase/frequency is synchronous to the reference component. The third component
represents an independent component at 3800 Hz with an independent instantaneous
phase/frequency variation. The sampling frequency of the simulation is 10240 Hz. A
total amount of 40 seconds of data was generated. Figure 6.3 shows the PSD of the

simulation signal with 25 average of 4096-point FFT block. Its is composed of three
spectral components marked by "R", "C", and "U", which represent the Reference,
Correlated and Un-correlated component. Figure 6.4(a), (b) and (c) show the
demodulated instantaneous frequency signal with carrier frequencies set at "R", "C", and

"U" respectively. Strong frequency correlation or synchronization can be clearly
visualized between the reference and correlation component, while no correlation
between the reference and uncorrelated component.

SSME Test Example for Generalized Hyper-Coherence Analysis

An example encountered from SSME hot firing test can best demonstrate the practical

application of hyper-coherence for machinery diagnostics. Figures 6.5 shows the PSD

taken from a HPFTP accelerometer during SSME test 901-471. The peak marked "N" is

corresponding to the fundamental RPM component, and the remaining major peaks are its

apparent harmonics 2N, 3N and 4N. Notice that, the PSD shows an abnormally high 3N

PSD amplitude. The hyper-coherence analysis as discussed in the last month progress

report was able to identify this spectral peak at the 3N frequency is not a true third

harmonic. The signature turned out to be the so-called pseudo 3N component which is

due to some independent source in the HPFTP not related to the machinery rotational

process. Figure 6.6 shows the instantaneous frequency signal for (a) N, (b) 4N, and (c)

3N components. The IF signal of 4N component is highly correlated with N, while the IF

signal of 3N is only weakly correlated with N.

The complete software codes in a conversion format from ASRrs DSP system to

Vanderbilt MGA Model Based Programming environment will be developed and tested

in the next reporting period. Due to the schedule slippage of Vanderbilt tasks in

converting the other programs (e.g. Tri-coherence, bi-coherence, hyper-coherence, etc.) to

the MPP system, ASRI has requested a no cost extension of this contract until 31 August

1996 to the Contracting Officer (COR). No other major problem which would impact the

contract cost has been encountered.

2.2.6.3 DSP Code Overview of GHC function using Data Translation's DSP-EZ

programming language running on C40 DSP.

66

Oh

GHC/SIMU
0 IE+01 = j , i

1000.0 0.126

2600.0 0.072

3802.5 0.049

280.0 0.3E-05

4147.5 0.4E-05

1580.0 0.4E-05

1530.0 0.4E-05

687.5 0.4E-05

2905.0 0.5E-05

422.5 0.3E-05

4592.5 0.3E-05

4077.5 0.4H-05

2070.0 0.4E-05

3170.0 0.4E-05

2967.5 _.4E-05

4132.5 0.4E-05

582.5 0.3E-05

4200.0 0.3E-05

525.0 0.3E-05

3480.0 0.4E-05

COMP= 1.228

NAVG= 25

BW= 2.50

0.1E-06
0

Channel 1
i I i I

k.
I I

S+ 0.00

i I I i

C

I I I I

Figure 6.3

I , , , , I , , , , I
1000 2000 3000

FREQUENCY (HZ)

PSD of Simulation Signal

i I I I

I I I

i I I I

d
c.v,¢l..*cJ

I I I I I

4000

V

S

q

/

H

Z

1
5000

, i

Reference

1003.2000

996.9000

GHC Simulation

__ I I I

I I I I

I I I I I

I , , , 1

i 1 I

I l i

i l 1 J

t

I I I

I I I -

3

2608.0000 _ ,

Correlated

2592.0000

I I

'- I I I

I I I l I I I

I I I I I l

fi

I ! I I I I I I

3810.0000

Uncorre]ated

3790.0000 I I I I I

10

V_

I I I I I

1
I I I l I I I

20
Time msec

I I

I I I l I I

30 40

Figure 6.4 cor(1,2) = 1.00 cor(1,3) = -.09 cor(2,3) =-.09

0.1E+02

617.5 5.399

1857.5 4.660

2472.5 0.536

2037.5 0.308

1817.5 0.237

1612.5 0.232

1792.5 0.226

62.5 0.225

1802.5 0.219

1782.5 0.206

1830.0 0.196

1837.5 0.169

1915.0 0.173

1905.0 0.163

1932.5 : 0.160

1922.5 0.159

185.0 0.155

1660.0 0.153

1690.0 0.152

10.0 0.149

COMP= 13.456

NAVG= 100

BW= 2.50

9010471 Channel

0.1E-01
0

I I i i i

I I I 1 I

500

Figure 6.5

i
I I I

S+ 0.00
! I

0%"

i i I

5_
0

I I I I

4_J

, , , I , , , , I
1000 1500

FREQUENCY (HZ)

I I l I I I I I

2000

I _

V

S

Q

/

Z

2500

N

4N

P3N

619.0000

616.8000

2475.0000

2469.8000

1860.2001

1854.2001

Figure 6.6

9010471

"JI-

'1 Ghc.DSP I
L'I- "1'-

'Originated from topo.dsp
'GHC redone on 7/12/96

'Revised on 7/25/96

**** DSP Basic Program Global Declaration ****

Option Explicit

'IConstants I
'-i-................. -i-

Const CTRLchan = 0

Const Userchan= 1
Const GHchan=2
Const DiskChan=3
Const FILTChan = 9
Const FILTERPOINTS = 0
Const CUTOFFLower =0

Const CUTOFFUpper =2
Const FILTER_SIZE =201

"I-........... .jr

'1Arrays I
'q-............ -l-

'channel for getting frequency & filter info.
'channel for getting user defined parameters
'channel for getting Fc, LPBW, and Order

Dim ADbuff As FloatArray
Dim ImpulseResponse As FloatArray
Dim BPFilter0 As FloatArray 'Global for ProcessControl

Dim BPFilterl As FloatArray
Dim TimeData As FloatArray

Dim PSD As FloatArray

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

IFQ As FloatArray
U0 As ComplexArray
U1 As ComplexArray
U2 As ComplexArray
U3 As ComplexArray

Filter0x As FloatArray
Filter0y As FloatArray
Filterlx As FloatArray
Filterly As FloatArray
Filter2x As FloatArray
Filter2y As FloatArray
Filter3x As FloatArray
Filter3y As FloatArray
LPBW As FloatArray
Fc As FloatArray
Order As FloatArray

'+ +

'1Variables I
'q-................ q-

Dim Frequency As Single
Dim BUFFSIZE As Integer

'For GHC

'low pass bandwidth in Hz

from user

72

Dim FFT_SIZE As Integer
Dim nmax As Integer

Dim MM As Integer 'For GHC
Dim NDEC As Integer
Dim RCFactor As Single
Dim Coeff As Single
Dim constl As Single

' **** Function Main ****

'Function Main()
'"t"................... "l-

'i Declaration I
_-'1-................... ,-I-

Dim NumBuffers As Integer
Dim NumOfAVG As Integer
Dim ADREADY As Integer
Dim NumPSDChd As Integer
Dim i, j, k, n, Length, start As Integer
Dim bw As Single
Dim Decimation As Integer
Dim DecLength As Integer
Dim DecStart As Integer
Dim PSDChan As Integer
Dim Phs0, Phsl, Phs2,Phs3 As Single
Dim Interval As Single
Dim cmdbuff As FloatArray
Dim cmdbuffer As FloatArray
Dim DAdata As FloatArray
Dim Channel As FloatArray
Dim SO As FloatArray
Dim AA As FloatArray
Dim BB As FloatArray
Dim CC As FloatArray
Dim DD As FloatArray
Dim GO As FloatArray
Dim G1 As FloatArray
Dim G2 As FloatArray
Dim G3 As FloatArray

FFT_SIZE =2048
BUFFSIZE =2048

nmax=FFT SIZE/2 + 1

Fc=GenLine(0,0,4)
LPBW=GenLine(0,0,4)
Order=GenLine(0,0,4)
GO -- GenLine(0,0,3)
G1 = GenLine(0,0,3)
G2 = GenLine(0,0,3)
G3 = GenLine(0,0,3)
cmdbuffer=GenLine(0,0,19)
t.. I- .. -3 W

'1 get the initial A/D frequency I

72

t.J I- ..

Do While Not Host.GetDataReady(CTRLchan)
Loop
cmdbuff = Host.GetBuffer(CTRLchan)

Frequency = cmdbuff(0)
FFT_SIZE = cmdbuff(1)

If Host.GetDataReady(UserChan) Then
cmdbuff=Host.GetBuffer(UserChan)
PSDChan = cmdbuff(0)

End If
_'t- -[-

'1Define A/D parameters I
t+ -t-

AD.Frequency =Frequency
AD.ClockSource = DTDSP_ICLK

AD.TriggerSource = DTDSP_ITRG
AD.NumChannels = 2 ' 8test

AD.AcqMode = DTDSP_WRAP
AD.InternalChannelBufferSize = BUFFSIZE * 8
_'-I-..................................... -t-

'1Define D/A parameters I
_-t-..................................... -t-

'DA.Frequency = Frequency
'DA.ClockSource = DTDSP_ICLK

'DA.TriggerSource = DTDSP_ITRG
'DA.NumChannels = 1

'DA.AcqMode - DTDSP_WRAP
'DA.InternalChannelBufferSize = BUFFSIZE*3
t. I- ...

'[initialize global array to all zeros I
I]_ ... _l_

ImpulseResponse = GenLine(0,0,BUFFSIZE)
ImpulseResponse(BUFFSIZE/2) = FFT_SIZE
t't- "t-

'1 initialize filter I
'-t- --[-

'Do While Not Host.GetDataReady(CTRLchan)
'Loop
'ProcessControl0
t-t- "k-

'[start acquiring data I
'-t- -t-

AD.ChannelType=DTDSP_DI
AD.Filter=AD.Frequency / 2
'AD.Start0

Phs0 = 0
Phsl = 0
Phs2 = 0
Phs3 = 0

* Main looping *

73

InitFilters(LPBW, Order)
constl = Frequency / (2*PI*NDEC)
Interval = 2 * PI * FFT_SIZE/Frequency

Do While 1

If Host.GetDataReady(GHchan) Then
cmdbuffer=Host.GetBuffer(GHchan)

For j=0 To 3
Fc(j)=cmdbuffer(l+j*4)
LPBW(j)=cmdbuffer(2+j*4)
Order(j)=cmdbuffer(3+j*4)

Next j
NDEC=cmdbuffer(16)
NumBuffers = cmdbuffer(17)
RCFactor = cmdbuffer(18)
MM = FFT_SIZE/NDEC

Coeff = exp(- PI * RCFactor)
constl = Frequency / (2*PI*NDEC)
InitFilters(LPBW, Order)

'Host.DebugPrint(" Coeff=" & Str(Coeff))
End If

AA = GenLine(0,0,0) 'initialized for concatenation
BB = GenLine(0,0,0)
CC -- GenLine(0,0,0)
DD = GenLine(0,0,0)

"l- "JI-

I Extract data from buffer
all- "l-

SO = SO * 0
For k = 1 To NumBuffers

'For j = 1 To NumOfAvg
TimeData =Host.GetBuffer(DiskChan)

PSD = ApplyFFT(TimeData)
SO = SO + PSD

'Next j
Host.PutBuffer(PSDChan- 1) = PSD 'S0/NumOfAvg

For i=0 To 3
If i=0 Then

Phs0 = Phs0 + Interval* Fc(i)
U0 = GenComplexCos(phs0,Fc(i),Frequency,FFT_SIZE)
G0=GHC(GO, U0, Filter0X, Filter0Y)

AA = AA & IFQ
ElseIf i=l Then

Phs 1 = Phs 1 + Interval * Fc(i)
U 1 = GenComplexCos(phs 1 ,Fc(i),Frequency,FFT_SIZE)
GI=GHC(G1, U1, FilterlX, FilterlY)

BB = BB & IFQ
ElseIf i=2 Then

74

Phs2 = Phs2 +Interval * Fc(i)
U2 = GenComplexCos(phs2,Fc(i),Frequency,FFT_SIZE)
G2=GHC(G2, U2, Filter2X, Filter2Y)

Else
CC = CC & IFQ

Phs3 = Phs3 +Interval * Fc(i)

U3 = GenComplexCos(phs3,Fc(i),Frequency,FFT_SIZE)
G3 =GHC(G3, U3, Filter3X, Filter3Y)

DD = DD & IFQ
End If

Next i
Next k

If Host.PutDataReady(10) Then
Host.PutBuffer(10)=AA

End If

If Host.PutDataReady(11) Then
Host.PutBuffer(11)=BB

End If

If Host.PutDataReady(12) Then
Host.PutBuffer(12)=CC

End If

If Host.PutDataReady(13) Then
Host.PutBuffer(13)=DD

End If

If (Host.GetDataReady(CTRLchan)
ProcessControl0

End If

And (AD.DataReady(0) < FFT_SIZE)) Then

Loop 'End of Do While loop

End Function
I

v *************_ _****** _,:_****_:¢**

' **** Function ProcessControl ****

v

Function ProcessControl0
Dim ctrlbuff As FloatArray
Dim FilterDataTemp As FloatArray
Dim FFTDataTemp As ComplexArray
Dim ready As Integer
Dim lowercut, uppercut As Single
Dim length As Integer
ready = TRUE
Do While ready

ctrlbuff = Host.GetBuffer(CTRLchan)

ready = Host.GetDataReady(CTRLchan)
Loop
I+ .. +

'1 generate a band pass filter object I
v+ ... +

75

lowercut = ctrlbuff(CUTOFFLower)

uppercut =ctrlbuff(CUTOFFUpper)
length = ctrlbuff(FILTERPOINTS)
BPFilter0 = InitBandPassFilter(lowercut,uppercut,Frequency,length)
BPFilterl = InitBandPassFilter(lowercut,uppercut,Frequency,length)
FilterDataTemp = Filter(BPFilter0,ImpulseResponse)
FFTDataTemp = fft(FilterDataTemp)
FilterDataTemp = dB(FFTDataTemp)
FilterDataTemp -FilterDataTemp - 20*logl0(FFT_SIZE) + 6.0
t. t- -{-

'l Send data to host for filter plotting I
"t- "Jr"

Host.PutBuffer(FILTchan) = FilterDataTemp
End Function
t

' ** Function InitFilters

Function InitFilters(LP As FloatArray, Od As FloatArray) As Integer

Dim i As Integer
Filter0x = InitLowPassFilter(LP(0), Frequency, Od(0))
Filter0y = InitLowPassFilter(LP(0), Frequency, Od(0))
Filter lx = InitLowPassFilter(LP(1), Frequency, Od(1))
Filter 1y = InitLowPassFilter(LP(1), Frequency, Od(1))
Filter2x = InitLowPassFilter(LP(2), Frequency, Od(2))
Filter2y - InitLowPassFilter(LP(2), Frequency, Od(2))
Filter3x = InitLowPassFilter(LP(3), Frequency, Od(3))
Filter3y = InitLowPassFilter(LP(3), Frequency, Od(3))

End Function

** Function ApplyFFT() **

** Calls: Window, fit, dB **

Function ApplyFFT(SomeData As FloatArray) As FloatArray
Dim Temp 1 As FloatArray
Dim Temp2 As ComplexArray
Dim BHWnd As FloatArray
Dim dBScale As Single

dBScale = -20 * logl0(10*FFT_SIZE) + 6.0
BHWnd=GenWindow(BLACKMAN_HARRIS_61 ,FFT_SIZE)

Temp 1=Window(BHWnd, SomeData)
Temp2=fft(Temp 1)
ApplyFFT=dB (Temp2)+dB Scale

* * Function Co_ugate **

End Function

I

1

76

Function Conjugate(A As Complex) As Complex
Dim rl, r2 As Single

rl = Real(A)
r2 = -Imag(A)
Conjugate = MakeComplex(rl, r2)

End Function
I

' ** Function ApplyCPWBD

Function ApplyCPWBD(AA As FloatArray) As FloatArray
Dim TData As FloatArray 'Function parameter by value only

Dim FData As ComplexArray
Dim PhData As FloatArray
Dim AmpData As FloatArray
Dim IM As FloatArray
Dim R As FloatArray
Dim DC As Single

TData =AA

FData=fft(TData)
PhData = Phase(FData)
AmpData = Abs(FData)
AmpData = GenLine(0, 1, 1024)
IM = AmpData* sin(PhData)
R= AmpData * cos(PhData)
TData = irfft(MakeComplex(R,IM))
TData= Abs(TData)
DC = Sum(TData) / FFT_SIZE
TData = TData- DC

ApplyCPWBD = TData
End Function

** Function ApplyReduction
** Return T4(0,1,2)=RMS,Skew, kurt

** T4(0) = RMS, T4(1) = Skew, T4(2) = Kurt

Function ApplyReduction(AA As FloatArray,
Dim $1, $2, $3, $4, Skew, Kurt As Integer

Dim T1 As FloatArray
Dim T2 As FloatArray
Dim T3 As FloatArray
Dim T4 As FloatArray
Dim RR As FloatArray

RR = GenLine(0, 0,6)
S 1 = Sum(AA)/n
T1 = AA - S1
T2=T1 *T1
T3 = T2 * T1
T4 = T2 * T2

$2 = Sum(T2)/n
$3 = Sum(T3)/n
$4 = Sum(T4)/n

n As Integer) As FloatArray

77

RR(0) = $2 ^ .5
If $2 >0 Or $2 <= -18 Then

RR(1) = $3/($2 ^ 1.5)
RR(2) = $4/($2 ^ 2)

Else

RR(1) =0
RR(2) = 0

End If

RR(3) = Max(AA)
RR(4) = Min(AA)
RR(5) = S1
ApplyReduction = RR

End Function
, ** _:**** g_g_>g*********

' ** Function atn2 **

Function atn2(xx As Single, yy As Single) As Single

Dim phi As Single
phi = atn(yy/xx)
If (phi >0 And xx <0) Or (phi <0 And xx <0) Then

atn2 = phi + PI
Else

atn2 = phi
End If

End Function
t

t

I

t

Function GHC(GL As FloatArray,
FloatArray) As FloatArray
Dim i, j,k As Integer
Dim ZZx As FloatArray

Dim ZZy As FloatArray
Dim Tx As FloatArray

Dim Ty As FloatArray
Dim env As FloatArray

Dim ps As FloatArray
Dim TIFQ As FloatArray
Dim TG As FloatArray

IFQ = GenLine(0,0,MM)
ZZx -- GenLine(0,0,MM)
ZZy = GenLine(0,0,MM)
env =GenLine(0,0,MM)

ps =GenLine(0,0,MM)
TIFQ -- GenLine(0,0,MM)
TG = GenLine(0,0,3) 'hold values of changed GL array

*************************:************

*** Function GHC ***

*** Global: Coeff, constl,MM, IFQ ***
_ _ _************ _****************** _********

UU As ComplexArray, FX As FloatArray, FY As

Tx = 2* TimeData * Real(UU)
Ty = -2 * TimeData * Imag(UU)
Tx= Filter(FX, Tx)
Ty = Filter(FY, Ty)
j=l
For i =0 To FFT_SIZE -1

78

k--j*NDEC
If (i<k) Then

ZZx(j- 1) = ZZx(j- 1) +Tx(i)
ZZy(j-1) = ZZy(j-1) +Ty(i)

Else

j =j+l
End If

Next i
ZZx = ZZx / NDEC

ZZy = ZZy / NDEC
For i =0 To MM-1

env(i) = (ZZx(i)A2 + ZZy(i)A2)A0.5

ps(i) = atn2(ZZx(i), ZZy(i))
ZZx(i) = cos(ps(i))
ZZy(i) = sin(ps(i))

Next i

TG(0) = ZZx(MM- 1)
TG(1) = ZZy(MM- 1)
TIFQ(0) = constl*(ZZx(0)*(ZZy(0)-GL(1))-(ZZx(0)-GL(0))*ZZy(0))
For i= 1 To MM- 1

TIFQ(i) -- constl*(ZZx(i)*(ZZy(i)-ZZy(i-1))-(ZZx(i)-ZZx(i-1))*ZZy(i))
Next i

IFQ(0) -- (1- Coeff) * TIFQ(0) +Coeff* GL(2)
For i = 1 To MM-1

IFQ(i) = (1-Coeff) *TIFQ(i) +Coeff* IFQ(i- 1)
Next i

TG(2) = IFQ(MM- 1)
GHC = TG

End Function

' ** RCLowPassFilter**

'Function RCLowPassFilter(A As Single, XX As FloatArray) As FloatArray
'Dim TT As FloatArray
'Static Pa, Pb, Pc, Pd, PP As Single
'Dim i As Integer

TT = GenLine(0,0,MM)
TT(0) = (1- A) * XX(0) + A * Pa
For i = 1 To MM-1

TT(i) = (l-A) * XX(i) + A * TT(i-1)
Next i

Pa = TT(MM- 1)
RCLowPassFilter = TT

'End Function

79

3.0 Conclusion

This Final Report documents and summarizes the results of the software conversion

effort. The six advanced nonlinear diagnostic DSP algorithms discussed in Section 2,

have been converted to a format consistent with that required for integration into the

Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment.

Textual/graphical descriptions of analysis algorithm structures along with their signal

flow charts have been established. Simulation examples with various pertinent

application scenarios were accomplished for demonstration and performance evaluation.

This effort allows the real-time execution of these algorithms using the MSFC MPP

Prototype System. In this report, ASRI has provided the complete computer source code,

including all FORTRAN/C++ Utilities, and all other utilities/supporting software libraries

that are required for operation.

Consultation/coordination on the details of these algorithms with both MSFC dynamic

analysts and Vanderbilt University's Measurement and Computing Group has also been

provided by ASRI. This activity include face-to-face meetings to provide

discussions/briefings of the details of these algorithms with both MSFC dynamic analysts

and Vanderbilt University's Measurement and Computing Group

In the performance of this contract, ASRI retains "unpublished-all rights reserved under

the copyright laws of the United States" regarding the algorithms computer software

rights. The government has unlimited use as governed by the Federal Acquisition

Regulation.

8O

Form Approved
REPORT DOCUMENTATION PAGE No.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 31, 1996 Final Report/November 1996

4. TITLE AND SUBTITLE

Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis
Algorithms for realtime Execution on MSFC's MPP Prototype System

6. AUTHOR(S)

Jen-Yi, Jong

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AI SIGNAL RESEARCH, INC.
3322 South Memorial Parkway, Suite 67
Huntsville, AL 35801

9.SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

Ms. Patrica Fundum, GP26-V

George C. Marshall Space Flight Center
NASA

Marshall Space Flight Center, AL 35812

5. FUNDING NUMBERS

NAS8-40341

8. PERFORMING ORGANIZATION

REPORT NUMBER

TR-4017-96-FR

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report was prepared by AI Signal Research, Inc. (ASRI) for the George C. Marshall Space Flight

Center, National Aeronautics and Space Administration. The work was performed under contract

NAS8-40341, entitled "Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis

Algorithms for realtime Execution on MSFC's MPP Prototype System " over the time period from

June 7, 1995 through December 2, 1996.

The work was carried out by Dr. Jen-Yi Jong serving as Program Manager. Dr. Jong was responsible

for the software development, conversion and evaluation of Nonlinear Signal Diagnostic Analysis

Algorithms. Ms. Polly Lu serving as programmer was responsible for implementing the software on

C40 DSP using Data Translation's DSP-EZ programming language.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION

OF REPORT

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

76
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev-2-89)

Prescribed by ANSI Std. Z39-18
298-102

